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Abstract 
Object detection in unconstrained images is an 

important image understanding problem with many 
potential applications. There has been little success in 
creating a single algorithm that can detect arbitrary objects 
in unconstrained images; instead, algorithms typically must 
be customized for each specific object. Consequently, it 
typically requires a large number of exemplars (for rigid 
objects) or a large amount of human intuition (for non-rigid 
objects) to develop a robust algorithm. We present a robust 
algorithm designed to detect a class of compound color 
objects given a single model image. A compound color 
object is defined as having a set of multiple, particular 
colors arranged spatially in a particular way, including 
flags, logos, cartoon characters, people in uniforms, etc. 
Our approach is based on a particular type of spatial-color 
joint probability function called the color edge co-
occurrence histogram (CECH). In addition, our algorithm 
employs perceptual color naming to handle color variation, 
and pre-screening to limit the search scope (i.e., size and 
location) of the object. Experimental results demonstrated 
that the proposed algorithm is insensitive to object rotation, 
scaling, partial occlusion, and folding, outperforming a 
closely related algorithm by a decisive margin. 

1. Introduction 

Object detection in unconstrained images is an important 

image understanding task, with potential use in a wide 

variety of image understanding and content-based indexing 

applications. Despite years of research attention, there has 

been little success in creating an algorithm that can reliably 

detect an arbitrary object in unconstrained images. The best 

that can be attained in the current state-of-the-art is to build 

separate algorithms for specific objects or classes of objects. 

Building an object detection algorithm for a new object 
is typically time consuming and labor intensive. There are 

two basic approaches: training a learning engine on a large 

amount of exemplars (“machine learning”) or using human 

intuition to craft models for finding the object (“human 

learning”). Neither approach is easy or universally 

applicable. Machine learning approaches, while powerful, 

need a large amount of exemplars under various conditions 

and may not work well for non-rigid objects. Crafting rules 
or models for object detection requires extensive human 

knowledge and intuition, subject to main difficulties 

including translating human knowledge into rules, 
generalizing to novel data, and enumerating all possible 

cases. Further, the resulting detector from either approach is 

often specialized: a completely new set of rules or new 

classifier must be generated for each new object. 

In this study, we limit our goal to developing a general, 

repurposable algorithm for detecting a class of objects, 

namely compound color objects, which are objects having a 

specific set of multiple colors that are arranged in a unique 
spatial layout. This class of objects includes, for example, 

flags, cartoon characters, logos, uniforms, signs, etc. The 

problem is non-trivial because the appearance of compound 

color objects may vary drastically from scene to scene. 

Objects like flags and logos often appear on flexible 

material. For example, a flag is subject to self-occlusion and 

non-affine distortion, depending on wind conditions. Since 

orientation of images and objects is not always known, the 

detector must be invariant to rotation. It must also be robust 
to color variations due to illuminant changes and inherent 

color differences from one instance of the object to another.  

Object detection is a fundamental problem in computer 

vision and has received a large amount of attention in the 

literature. There is a spectrum of object detection 

approaches, depending on the degree of spatial distortion 

that must be accommodated. On one end of the spectrum is 

pixel-by-pixel template matching, which is used for rigid 
objects absent of significant out-of-plane rotation (e.g., 

frontal face detection). On the other end of the spectrum are 

flexible models that capture the possible spatial 

relationships between their component parts. Such an 

approach is necessary for objects whose spatial 

arrangements can change significantly (e.g., human bodies 

and horses in [1]). As one moves toward the latter end of the 

spectrum, the representations become more abstract but 

more flexible in the types of distortions that they can handle. 
However, they also require more high-level knowledge 

about the target object and become more susceptible to 

model failures.  

Major relevant works includes the following, roughly 

ordered according to increasing levels of abstraction on the 

above-described representation spectrum: 

Rowley et al. [3] detect faces using a neural network 
classifier on the intensity patterns in an image. 
Preprocessing is applied to input images to correct for 
lighting, contrast and orientation variations.  
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Schneiderman and Kanade [4] detect faces using joint 
histograms of wavelet features. Their statistical approach 
allows robustness to variation in facial appearances.  
Oren et. al. [5] use wavelet features to detect pedestrians. 
Input images are scanned for pedestrians using windows 
of various sizes and are classified with an SVM.  
Selinger and Nelson [6] represent 3-D objects by several 
2-D images taken from different angles. The 2-D images 
are further abstracted as groups of contour curves. 
Recognition is performed by exhaustive template 
matching of the curves. 
Huttenlocher et al. [7] represent objects using edge pixel 
maps and compare images using the Hausdorff distance 
between the locations of edge pixels. The Hausdorff 
distance allows tolerance to some geometric distortion.  
Cootes et al. [8] represent objects using active appearance 
models (AAMs) that model the shape and grayscale 
appearance of objects. The models allow detection of 
moderately flexible objects, like faces.  
Forsyth and Fleck [1] segment an image into candidate 
horse regions using color and texture features and 
assembles regions using a graphical model (“body plan”) 
to support the related geometric reasoning.  
Fergus et al. [2] model objects as flexible constellations of 
parts and use a probabilistic representation for all aspects 
of the object: shape, appearance, occlusion and relative 
scale. They learn and recognize object class models from 
unlabeled and unsegmented cluttered scenes. 

In the design of any object detection system, one must 

choose a suitable representation for comparing the object 

model to a search image. The representation is typically 

chosen based on types of distortion that are expected in the 

object. By definition, the spatial layout of a compound color 

object is largely fixed, but distortions may occur as a result 

of camera angle and projection of the object on a non-rigid 
surface, like flags and logos on fabric. Clearly, intensity or 

edge patterns are too rigid while graphical models are too 

fragile for compound color objects.  

An attractive representation is color co-occurrence 

histograms (CCH, also called correlograms in [10]). CCH is 

a representation that captures the colors within an object as 

well as some spatial layout information. Chang and Krumm 

[9] originally proposed an object detection algorithm using 

CCH. They quantized multiple object models to a small 
number of colors using a k-means clustering algorithm and 

quantized the test images using the same color clusters. A 

search image is scanned by comparing the color co-

occurrence histograms of large, overlapping regions with 

those of the model images using histogram intersection. 

Object locations are refined by a hill-climbing search 

around regions identified during the rough scan. The 

example images showed good results for detecting the same
object amid cluttered scenes. However, the experiments 

were performed under controlled conditions; all images 

were taken in a laboratory where object illumination, size, 

and orientation were kept constant. Such assumptions do 

not hold true for unconstrained images, where illumination 

and object size can vary widely between images. Also, the 

computation demands of the algorithm described in [9] are 

high even though the scale is known due to its exhaustive 

search procedure. 

We present a robust object detection algorithm that is 
easily re-deployable for most compound color objects using 

a single model image. Inspired by [9], we use spatial-color 
joint probability functions to perform the detection. Such 

functions capture the spatial relationships between the 

colors in an object, but allow for some degrees of distortion. 

This approach is more flexible than pixel-by-pixel template 

matching but is simple enough that models can be built 

without large amounts of training data or input from a 
human expert. In particular, we propose a novel, more 

desirable spatial-color joint probability function, referred to 

as the color edge co-occurrence histogram (CECH).
The major contributions of this work include (1) using 

perceptual color quantization by color naming to reduce 

sensitivity to color variations, (2) using a novel color edge 
co-occurrence histogram as an object representation with 

improved robustness in the presence of geometric 

distortions, (3) using normalized cross-correlation as the 
similarity metric for co-occurrence histograms, and (4) 

using pre-screening to facilitate estimation of rough scale 

and location and consequently fast search.  

The remainder of this paper describes our object 

detection algorithm in detail. Section 2 describes our 

methodology, including a perceptual color quantization 

algorithm, a fast object prescreening algorithm, an object 

detection algorithm, and techniques for efficient 

implementation. Section 3 presents experimental results of 
our algorithm applied to detecting a variety of objects in a 

variety of different images, with comparisons to the original 

algorithm in [9]. Finally, we summarize and conclude in 

Section 4. 

2. Methodology 

In this study, we assume that the algorithm is provided 

with a model image M of the object being sought, and an 

input search image I, which may contain zero, one, or 

multiple of the target objects. It is assumed that the target 
object may appear anywhere in the image, at any reasonable 

size, with reasonable types and amounts of distortions (not
limited to affine transforms). Our convention is a coordinate 

system with the top-left pixel as the origin, x values 

increasing towards the right, and y values increasing 

towards the bottom. For a pixel at location p = (x,y), we use 

I(p) to represent the color value stored at that location in 

image I.

2.1. Perceptual color quantization by color naming 

It is desirable to quantize the color space properly to 

reduce the dimensionality for computing CCH. In [9], color 
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quantization was simply performed in the RGB color space. 

However, the appearance of the colors of an object may 

differ significantly from image to image because of material 

differences, illumination variations, perceptual color 

surround effects, etc. The quantization must be designed 
carefully to ensure that perceptually similar colors are 

mapped to the same quantized color value, with minimum 

sensitivity to color variations. RGB color space is known to 

be sensitive to color variations, prompting researchers to use 

more desirable color spaces such as Luv and HSV [11].  

Humans tend to use a very small set of basic color names 

to describe colors in objects, discounting subtle or 

sometimes even substantial color variations. For example, 
although the American and British flags contain different 

Pantone  colors, most humans would describe them both as 
“red,” “white,” and “blue.” A desirable property of 

quantization for object detection is to create color clusters 

that are meaningful and nameable for human observers. This 

would let a human specify a target object in terms of basic 

colors, e.g., “find all rectangular objects with a blue square 

that neighbors interleaving red and white stripes” (i.e., U.S. 

flag). For automatic object detection, a major advantage of 

using perceptually related color names is that they are very 
stable with respect to color variations. 

Color naming has been applied to image retrieval in 

[11]. They partition the CIE LAB color space into 2520 

segments and assign names to each partition, based on input 

from two observers. However, a uniform partitioning is 

problematic because of the nonlinearities in the LAB space. 

Also, basing the color naming on the ad-hoc observations of 

a handful of human observers does not take into account the 

wide variability in human perception of color. 
We propose a more principled perception-based 

approach to quantizing and naming the color space. We use 

a two-stage process that employs the standard ISCC-NBS 

Color Names Dictionary [12]. The ISCC-NBS system 

defines 267 standard color partitions, each with a standard 

color name and a representative color (called the centroid 

color). The ISCC-NBS color names are basic colors with a 

prefix of one or more adjectives, e.g., “Vivid Red,” “Strong 

Reddish Brown,” “Light Grayish Yellowish Brown,” etc. 
An input image, I, is first converted into the CIE LAB 

color space [13]. Next, each of the pixels is assigned to the 

standard name of the closest ISCC-NBS centroid color, 

according to the Euclidean distance in LAB space. In the 

second stage, a look-up table is used to map the assigned 

color names to a smaller set of colors Qc: red, green, yellow, 
blue, orange, purple, brown, white, black, and gray. The 

look-up table is constructed by mapping each ISCC-NBS 
color name to the name produced after all adjectives have 

been removed, with modifications based on input from 

human observers or the specific object detection task at 

hand. Although the color quantization approach is 

conceptually split into two stages, note that the LAB 

conversion and both stages of quantization can be 

performed using a single e composite 3D lookup table. 

2.2. Color edge co-occurrence histograms (CECH) 

The color co-occurrence histogram (CCH) captures 

information on the spatial layout of colors within an image. 

It is a three-dimensional histogram, indexed by color in two 

dimensions, and spatial distance in the third dimension, that 
records the frequency that pixels of two given colors occur 

at a given spatial separation. We define it formally for any 

region J of an image I as follows: 
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may seem unusual because only one pixel in the pair must 

belong to J. As explained in Section 2.5, this property turns 

out to better promote efficient computation of the CCH. 
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It is possible to use another distance metric or to quantize 

differently (e.g., non-uniformly). Note that because 

Euclidean distance is invariant to rotation, the CCH is also 

invariant to rotation. This is a very desirable feature for 
object detection. If city-block distance is used, more 

efficient CCH computation is possible [10], but the rotation 

invariant property is lost. 

The CCH, as used in [9], suffers from a fundamental 

problem: solid regions of color tend to contribute a 

disproportionate amount of energy and overwhelm 

comparison metrics. This causes the CCH to show similarity 

between images with similar regions of solid color arranged 
in quite different spatial layouts. We solved this problem 

with a new construct called the color edge co-occurrence 
histogram. This histogram captures the distribution of 

separation between pairs of color edges, preventing solid 

color regions from dominating the histogram. Color 

transitions are perceptually very important; therefore, CECH 

better captures the spatial signature of an image region. 

The CECH is defined as follows: 

),qdist(),(

),(),edges(),edges(
),(size

),,( then},CECH{Aif

2122

1121

21

21

ppdpIc

pIcIpJp
pp

dccAIJ

where edges(I) is the set of pixels in I that either have at 
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least one 8-neighbor of a different color or lie on the 

boundary of I. Another advantage of the CECH is that its 

computation is much more efficient than the CCH on a 

typical region. This is because image pixels that are not 

edges can be immediately ignored, saving Td
2 operations per 

non-edge pixel. This represents substantial savings because 

the majority of pixels in a typical image are not edges. 

2.3. Prescreening 

A fast prescreening step is employed to eliminate image 

regions that obviously do not contain the target object in 

order to facilitate efficient search. The prescreening step is 

accomplished in the following way. Identify the set S1 of 

colors occupying a significant percentage (e.g., >10%) of 
the area of quantized model image MQ. Next, pass a window 

over the quantized search image, IQ. We use a window of 

size c  c where c is one-tenth the length of the longer 
dimension of I. For each window centered at (x,y), identify 

the set S(x,y) of the colors occupying a significant percentage 

(e.g., >10%) of the window area. A binary mask image, P1,

is created that identifies pixels corresponding to possible 

object locations as 1 and background regions as 0: 

otherwise0
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where TA is some constant equal to, for example, 0.5. 

Mask image P1 removes image regions that do not have 

the correct colors to contain the target object. However, the 
local spatial layout of the colors has not been verified. 

Therefore, we compute a second mask image, P2, which 

checks that the local spatial color arrangements are also 

consistent with the target object. P2 is computed by 

randomly choosing pairs of pixels from IQ no further than Td

pixels apart. For each pair (p1,p2) at distance d, the 

corresponding entry (IQ(p1),IQ(p2),d) in the model CCH is 

checked, and the probability p of occurrence is computed. 
This probability is added to the two pixels in P2, i.e., add p
to P2(p1) and P2(p2). This process is repeated many times 

(e.g., 10 mn times, where m  n are the dimensions of I). 
The resulting image P2 is like a probability map, 

representing the probability that each pixel is located in the 

target object. As a result of the random nature of this 

process, probabilities of individual pixels may be noisy. To 

reduce such noise, a mean filter is applied to P2. P2 is 

thresholded (e.g., at a fixed threshold of 0.1), and the final 

mask image P is computed by taking the logical AND of P1

and P2. A pixel is 1 in P only if it satisfies the local color 

requirements of P1 and the spatial arrangement requirements 

of P2.

Connected-component analysis is performed on P, and 

the minimum enclosing rectangles of all connected 

components are determined. These rectangles make up the 

set R of search regions that may contain the target object. 

Only these regions are further considered in the remaining 

steps of the algorithm. In addition, the prescreening 

provides a coarse range of the scale. 

2.4. Object detection 

Each of the search regions in set R identified during 

prescreening is examined separately. Suppose search region 

Ri is being examined. It is assumed that the model image M

has dimensions mm nm and that this represents the smallest 
possible size of the object in a search image. The largest 

scaling of the model M that fits inside Ri, while preserving 

its aspect ratio, is determined: 
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where mi  ni are the dimensions of Ri. We search for 
objects of arbitrary size by considering multiple scale 

factors between 1.0 and H. Choosing equally spaced scale 

factors is one option, but proper size matching is more 

important at smaller sizes than at larger ones. Therefore, we 

choose our set of scale factors { o, 1, 2, … n} such that o

= 1 and j+1 = j, where > 1.0 is a constant (e.g., 1.1).  

For each scaling factor j, the pixel data in search region 

Ri is subsampled by j. The resulting subsampled-image 

region is searched by considering search windows of size 

Lmm Lnm, at increments of x and y, where x and y
are constants (e.g., equal to 10 pixels). In other words, the 

set of search window positions within subsampled Ri at 

scaling factor j is: 
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We require a meaningful similarity metric between a 

candidate rectangle and a model. Normalized L1 distance 
and histogram intersection [14] have been proposed in the 

past for comparing histograms, but both of these metrics 

have disadvantages. The L1 distance demands an exact bin-

by-bin match between histograms and thus punishes areas 

that contain background in addition to the target object. 

Histogram intersection attempts to correct this but causes 

many false alarms. Histogram intersection, used in the 

original CCH-based algorithm [9], simply measures the 

presence of the model colors without verifying that they 
appear in the correct proportions; we found it to be prone to 

false positives in our study. 

We employed a similarity measure that overcomes the 

above problems by emphasizing feature comparison along 

image edges and ensuring that colors are present in the same 

proportions. Our metric computes the similarity between a 

model M and an image region Ir in the following way. Let 

Cm be the CECH of M and Cr be the CECH of Ir. The mean 
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bin height of Cm is subtracted from each of its bins, and the 

mean bin height of Cr is subtracted from each of its bins. 

Next, we define a similarity measure based on a bin-by-bin 

linear regression between Cm and Cr, i.e., find a scalar b in 

),,(),,(),,( 212121 dccdccbCdccC mr

such that the residuals matrix  is minimized according to a 
least-squares criterion. The best-fit value of b and the 

correlation coefficient cc are computed using the standard 

linear regression formulae [15].  

A high-quality match between Cm and Cr causes a high 

correlation coefficient, indicating that the heights of the bins 

in each CECH are similar in proportion and a value of b
close to 1.0, indicating that the size of Ir is close to the size 

of the target object. We define a similarity measure De as a 
combination of these two criteria: 

)),(log1)(1(,0max),(),(
211 rmrmrme

CCbkCCcckCCD

where 0 < k1 < 1.0 is a constant (e.g., k1 = 0.9). The 

logarithm ensures that a match is punished equally for being 

n times too large as it is for being n times too small.  

We also must test that the same quantities of color are 

present in both image regions. To do this, we compute the 

color histogram of M and Ir, called CHm and CHr,

respectively. A color-based distance Dc is, therefore defined 

as follows: 
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where 0 < k2 < 1.0 is a constant (e.g., k2 = 0.9). Then the 

overall similarity between two image regions is given by 
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where 0 < k3 < 1.0 is a constant (e.g. k3 = 0.5). Note that the 

parameters (k1, k2, k3), while empirically chosen, are fixed. 

To perform object detection, the similarity measure D is 
computed between each of the search windows in the sets 

Pi,j and the model. The windows with the best scores at each 

scale factor are selected. Next, the search window with the 

best score for each search region Ri is selected among the 

best windows from each scale factor. Each of the selected 

search windows is declared to be the target object if its 

similarity score is above a threshold (e.g., 0.6).  

If the model M has an aspect ratio close to 1.0 (i.e., 
circular or square model), rotation invariant searching is 

automatically achieved because of the internal rotation 

invariance of the CECH. In other cases, the searching 

procedure must be repeated for multiple model orientations. 

We have found that, in most cases, only two model 

orientations (horizontal and vertical) are needed, even when 

the target objects are aligned at other orientations. 

2.5. Efficient searching 

Computation of the CECH on an n n pixel region with 

distance threshold Td using a naïve algorithm is O(n2Td
2). A 

straightforward implementation of the search described in 

the previous section is, therefore, expensive. Inspired by 

similar work in the past, we have developed several 

techniques to drastically reduce computation time.  

(a) (b) (c)

(d) (e)
(f) 

Figure 1: Sample detection results for U.S. flags in (a) through (d) and the Kodak company logo in (e) and (f). 
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Note that the CECH is additive, that is, for three regions 

A, B, and C in image I:

C,IB,IA,I

B ACBA

CECHCECHCECH

 then0andif

Second, note that, typically, x and y are set such that x
<< mm and y << mn, causing a significant amount of 

overlap between adjacent search windows. This is exploited 

by storing the CECH of previously visited search windows 
and using them to compute the CECH of overlapping search 

windows at the same scale factor. For example, suppose the 

CECH of region B1 has been computed, and the CECH of 

an overlapping window B2 is needed. Suppose S1 is the set 

of pixels in B1 but not B2 and A1 is the set of pixels in B2 

but not B1. The CECH of B2 can be computed as follows: 

}1CECH{}1CECH{}1CECH{}2CECH{ ,IA,IS,IB,IB

This computation is very fast because CECH{B1,I} is 
already known, and S1 and A1 are small image regions. 
Once the CECH of one search window has been determined, 
this technique can be applied recursively to efficiently 
compute the CECHs of all remaining search windows. 

It is also possible to reuse information from the CECHs 
at lower scale factors of an image to speed computation of 
the CECHs at higher scale factors. Specifically, we note that 
for an image I subsampled at a scale factors 1 and 2 = s 1,

where s N, if A = CECH{I 1} and B = CECH{I 2} then 
B(c1,c2,ds) = A(c1,c2,d). In other words, it is possible to 
recycle some of the bins from the CECH at a lower scale 
factor when computing the CECH with an even multiple of 
that scale factor. When s = 2, for example, roughly one-
fourth of the cost of computing the CECH can be saved by 
exploiting this scale redundancy.  

3. Experimental results 

Our proposed detection algorithm has been tested on a 
variety of different compound color objects, including flags 
and logos. Figure 1 presents sample results of the algorithm 
applied to detecting the flag of the United States and the 
Kodak company logo. The model image size was 77 × 47 
for the flag and 43 × 43 for the logo. In Figure 1, a through 
d show reasonable detection results for a variety of images, 
including flags with rotation and some degree of self-
occlusion (image a), spatial distortion (image b), difficult 
illumination conditions and confusing flags (image c), and 
multiple flags per image (image d). Note that for two of the 
flags in d, the incorrect flag orientation was chosen. This 
occurs because the CECH is invariant to rotation and the 
flag is somewhat symmetric with respect to a 90º rotation. 
Postprocessing could be used to correct this if accurate 
object orientations are required by an application. Images e
and f also show good results for the logo, despite the 

distortion from a flexible surface in e and the cluttered 
background in f.

The experiment with the American flag was conducted 
using a single flag model on 98 images uploaded by Internet 
users to the Tribute to American Spirit PhotoQuilt 
(http://www.kodak.com/go/photoquilt). This is a challenging 
dataset because of the wide variety of subject material, 
illumination, photographic composition skill, and camera 
type. All images were subsampled to a resolution of 256 × 
384 before processing. We counted an accurate detection 
when the bounding box produced by the algorithm matched 
to within about 20% of the actual size of the flag (i.e., when 
the algorithm missed no more than 20% of the actual flag’s 
area and included no more than 20% of the flag’s area in the 
background). The results showed that 81.3% of the flags in 
the dataset were accurately detected. An additional 5.6% of 
the flags were detected but had a localization error greater 
than 20%. Depending on the application, accurate 
localization may not matter. For example, if the application 
is to search for images containing flags, inaccurate bounding 
box localization would not be a problem. The remaining 
13.1% of the flags were not detected. Most of these 
correspond to extremely small flags (e.g., those in Figure 
1d) or images with severe color problems. The false alarm 
rate was 1 per 6 images. 

To validate the merits of the proposed algorithm, we 
conducted a comparison with the only closely related 
algorithm in [9]. Because that algorithm was designed with 
the assumption that the precise scale and orientation of the 
object is known, we actually provided such information to 
that algorithm in our experiments. Note that in doing so we 
were giving a major advantage to that algorithm. Without 
such information, it is conceivable that the algorithm would 
have to search for ranges of scales and orientations; there is 
no guarantee of reaching the precise scale and orientation 
because it is impractical to search all possible values.  

The fROC (Free-response Receiver Operation 
Characteristic) curve of our algorithm is shown in Figure 2. 
Because the original CCH-based algorithm was designed to 
find exactly one object in any given image, its performance 
is characterized by a single operating point (vs. a full curve). 
Even with the handicap (knowing precise scale and 
orientation), the original CCH-based algorithm performed 
poorly because it was not insensitive to color variations and 
geometric deformations. At the same detection rate of 60%, 
our algorithm produced only one false positive vs. sixteen 
by the original CCH-based algorithm, for the entire test set. 
Note that there is no training set per se for either algorithm 
because each relies on only one model image. At the same 
false positive rate of roughly one per six images, the 
detection rate of our algorithm is 81% vs. 58% by the 
original CCH-based algorithm. Clearly, our algorithm 
outperformed by a decisive margin because of the four 
major components described in Sections 2.1 through 2.4.  

Empirically, our algorithm is on the average 2x faster 
than the original CCH-based algorithm in [9] (for one object 
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of known scale and orientation), even thought we search for 
multiple scales and orientations for potentially multiple 
instances of the object.  

Figure 2: The fROC curve of our algorithm and comparison with 

the algorithm (one operating point) in [9].  

4. Conclusions 

This paper addresses the problem of detecting different 
instances of the same type of compound color object in 
unconstrained images. We proposed an algorithm based on 
color edge co-occurrence histograms and additional 
mechanisms for coping with color and geometric variations. 
Experiments demonstrated its efficacy on different 
compound color objects in an extremely challenging dataset. 
It represents a significant robustness improvement over the 
appealing but fragile original algorithm in [9], and the same 
negligible overhead for either machine learning (it often 
takes only a single model image) or human learning (it takes 
no object-specific rule or model crafting).  

There are several opportunities for future work in this 
area. While our perceptually motivated color quantization 
produces good results on most images, some colors are 
difficult to quantize due to ambiguity. For example, a light 
pink color could be assigned to white or red, and the best 
choice may vary from image to image. A possible solution 
is to allow the quantization algorithm to assign multiple
quantized colors to a single pixel, and build fuzzy CECHs 
that incorporate all of the possible quantized colors into the 
feature space. 

While the CECH records gross spatial layout 
information, it is not capable of discerning subtle shape 
differences like images containing different lines of text. 
This is beneficial for handling object distortion but can 
cause false alarms. Future work could study alternative 

forms of spatial-color joint probability functions that may 
provide a richer set of spatial information while still offering 
robustness to object distortion. 
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