
The Pennsylvania State University

The Graduate School

Department of Computer Science and Engineering

EXTRACTION OF UNCONSTRAINED CAPTION TEXT

FROM GENERAL-PURPOSE VIDEO

A Thesis in

Computer Science and Engineering

by

David J. Crandall

c© 2001 David J. Crandall

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science

May 2001

I grant The Pennsylvania State University the non-exclusive right to use this work

for the University’s own purposes and to make single copies of the work available to the

public on a not-for-profit basis if copies are not otherwise available.

David J. Crandall

We approve the thesis of David J. Crandall.

Date of Signature

Rangachar Kasturi
Professor of Computer Science and Engineering
Thesis Adviser

Lee D. Coraor
Associate Professor of Computer Science and Engineering

Dale A. Miller
Professor of Computer Science and Engineering
Head of the Department of Computer Science and Engineering

iii

Abstract

The popularity of digital video is increasing rapidly. To help users navigate li-

braries of video, algorithms that automatically index video based on content are needed.

One approach is to extract text appearing in video. Such text often gives an indication

of a scene’s semantic content. This is a more difficult problem than recognition of doc-

ument images due to the unconstrained nature of general-purpose video. Text can have

arbitrary color, size, and orientation. Backgrounds may be complex and changing.

Most work so far has made restrictive assumptions about the nature of text occur-

ring in video. Such work is therefore not applicable to unconstrained, general-purpose

video. Also, most work so far has focused only on detecting the spatial extent of text

in individual video frames. But text occurring in video usually persists for several sec-

onds. This constitutes a text event that should be entered only once in the video index.

Therefore it is also necessary to determine the temporal extent of text events. This is

a non-trivial problem because text may move, rotate, grow, shrink, or otherwise change

over time. Such text effects are common in television programs and commercials to

attract viewer attention, but have so far been ignored in the literature.

This thesis discusses the problems involved in extracting caption text from un-

constrained, general-purpose MPEG-1 video. These problems include localizing text in

individual video frames, binarizing text, and tracking text as it moves and changes over

time. Solutions are proposed for each of these problems and compared with existing

work found in the literature.

iv

Table of Contents

List of Tables . viii

List of Figures . ix

Acknowledgments . xi

Chapter 1. Introduction . 1

1.1 Motivation for intelligent video indexing 1

1.2 Motivation for extracting text from video 3

1.3 Differences between video text extraction and document OCR 6

1.4 Problem statement and scope of this thesis 7

Chapter 2. Detection and localization of unconstrained caption text 10

2.1 Introduction . 10

2.2 Review of prior text detection and localization work 11

2.2.1 Edge-based text localization 11

2.2.2 Stroke-based text localization 12

2.2.3 Local texture-based localization 14

2.2.4 Color clustering-based localization 15

2.2.5 Neural-network based localization 16

2.2.6 Observations on text detection literature to date 17

2.3 Algorithm A: A DCT-based algorithm for caption text detection . . 18

v

2.3.1 Chaddha94 . 18

2.3.2 Application to video frames 19

2.3.3 Region-growing to increase detection accuracy 20

2.3.4 Heuristic filtering . 22

2.3.5 Text box localization . 23

2.3.6 Results and Discussion . 23

2.4 Algorithm B: An algorithm for detecting caption text of arbitrary size

and orientation . 28

2.4.1 Choice of DCT coefficients . 29

2.4.2 Detection of text blocks . 29

2.4.3 Choice of threshold . 32

2.4.4 Hierarchical subsampling to detect different sizes of text . . . 33

2.4.5 Localization of text with arbitrary orientation 35

2.4.6 Results . 36

2.5 Performance Evaluation . 37

2.5.1 Video datasets . 37

2.5.2 Evaluation criteria . 40

2.5.3 Experimental protocol . 41

2.5.4 Results . 42

Chapter 3. Text tracking . 46

3.1 Introduction . 46

3.2 Review of prior work . 49

vi

3.3 Method for tracking rigid text using MPEG motion vectors 51

3.3.1 Review of MPEG motion vectors 52

3.3.2 Motion prediction using MPEG motion vectors 52

3.3.3 Refinement using gradient-based correspondence 55

3.3.4 Text entering or leaving the video 57

3.3.5 Results . 58

3.4 Shape-based method for tracking unconstrained caption text 59

3.4.1 Results . 67

Chapter 4. Binarization of caption text . 75

4.1 Introduction . 75

4.2 Challenges of binarization of video frames 76

4.3 Review of prior binarization work . 79

4.3.1 Global thresholding . 79

4.3.2 Local thresholding . 81

4.3.3 Color clustering . 82

4.3.4 Neural Networks . 83

4.3.5 No binarization . 84

4.3.6 Remarks on the state-of-the-art 84

4.4 An algorithm for text binarization in video frames 85

4.4.1 Temporal integration . 85

4.4.2 Resolution and contrast enhancement 88

4.4.3 Logical level thresholding . 89

vii

4.4.4 Character candidate filtering 91

4.4.5 Choice of binarization polarity 91

4.5 Results . 93

Chapter 5. Summary and Conclusions . 98

5.1 Opportunities for future work . 99

References . 102

viii

List of Tables

2.1 Detection/localization performance for caption text on Dataset A. . . . 45

2.2 Detection/localization performance for caption text on Dataset B. . . . 45

ix

List of Figures

1.1 Examples of caption text indicating the semantic content of video. . . . 4

1.2 Examples of scene text indicating the semantic content of video. 5

2.1 Text block detection by thresholding DCT coefficient energies. 21

2.2 Output of Algorithm A on video frames with caption text. 24

2.3 Output of Algorithm A on video frames with caption text. 26

2.4 Examples of poor-quality detection results from Algorithm A. 27

2.5 Average DCT coefficient energy for text and non-text DCT blocks. . . . 30

2.6 Optimal threshold versus average video frame contrast. 34

2.7 Examples of detected text of various orientations. 38

3.1 Examples of caption text behavior over time 47

3.2 MPEG motion vectors indicate object motion but are noisy. 54

3.3 Tracking algorithm applied to “losethegray.mpg” video sequence with a

changing background. 60

3.4 Tracking algorithm applied to “scrolling7.mpg” video sequence with horizontally-

scrolling text entering and exiting the frame. 61

3.5 Tracking algorithm applied to “t4.mpg” video sequence with vertically-

scrolling caption text. 62

3.6 Tracking algorithm applied to scene text in “foxsports.mpg” video sequence. 63

x

3.7 Tracking algorithm applied to scene text with erratic motion in “poster.mpg”

video sequence. 64

3.8 Text feature point extraction and comparison for two consecutive video

frames containing the same text event. 68

3.9 Text feature point extraction and comparison for two consecutive video

frames containing different text events. 69

3.10 ROC curve of tracker performance. 72

3.11 Sample results of combined text detection and tracking on growing,

shrinking, and rotating text. 73

3.12 Sample results of combined text detection and tracking on growing text

against an unconstrained background. 74

4.1 Histogram-based thresholding of a document image. 77

4.2 Histogram-based thresholding gives poor results on unconstrained video

frames. 78

4.3 Steps of the binarization algorithm. 86

4.4 Temporal averaging reduces background noise and improves contrast. . . 89

4.5 Binarization results for sample video frames. 95

4.6 Binarization results for very challenging video frames. 97

xi

Acknowledgments

I am indebted to Dr. Rangachar Kasturi for introducing me to the field of Com-

puter Vision early in my academic career. His wholehearted support, gentle encourage-

ment, and constant (though often not deserved) patience have let me achieve far more

than I ever thought possible. I would also like to thank my undergraduate advisor,

Dr. Lee Coraor, for his support throughout both my undergraduate and graduate stud-

ies. I thank the members of the Computer Vision Lab, especially Sameer Antani, Ullas

Gargi, Vlad Mariano, Anand Narasimhamurthy, and JinHyeong Park. Their insight has

enriched my work; their friendship has enriched my life.

I would like to thank my parents, Ron and Sally, for constantly and selflessly

supporting me in everything that I do. Just as their comments have improved the drafts

of this thesis, their role models will always help me be the best person that I can be. I

could not ask for more perfect parents. Finally, I wish to thank Shawna Daigle for her

love and support, and for always helping me to remember that there really is life outside

the Vision Lab.

1

Chapter 1

Introduction

1.1 Motivation for intelligent video indexing

The popularity of digital video is growing at an explosive rate. Hundreds of

television stations are now broadcast over digital cable every day. Digital Versatile Discs

(DVDs) are quickly replacing analog video tape as the preferred medium for viewing

movies at home. Inexpensive video capture cards and plummeting data storage costs are

allowing users with even modest workstations to convert home movies to digital form.

Surveillance cameras are everywhere, capturing video for detection of suspicious activity.

Streaming video clips are becoming increasingly popular on the Internet.

The rapid rise in quantities of digital video carries enormous promise. Given such

huge amounts of video data available, it is quite probable that a video clip that a user

wants to see exists somewhere in digital form. One can imagine large video databases

available on the Internet that would give users access to vast quantities of video data

from their home personal computers.

But as quantities of available video data grow, it will become increasingly difficult

for users to locate specific video clips of interest. It is analogous to the proverbial problem

of finding a needle in an ever-growing haystack of video data. Search engines are required

that can automatically identify relevant video clips based on a user’s query.

2

However, the current state-of-the-art in video search technology is quite limited.

The video search engines of Lycos and Altavista exemplify the current technology avail-

able on the Internet. Lycos [51] requires humans to manually index each video by identi-

fying keywords that describe its content. User queries are matched against this keyword

index to find relevant video clips. This approach is clearly intractable for large, growing

video libraries because of the large amount of effort required to create video indices by

hand. Also, the quality of the search engine is directly limited by the quality and scope

of the manually-created index. It is impossible for the human indexer to identify all

possible keywords that describe a given video sequence.

Altavista’s video search engine [2] attempts to index videos contained in World

Wide Web pages automatically. Words near a video in a web page are assumed to

describe the content of the video and are used as its keywords. This approach eliminates

the dependence on human indexers, but the assumption that words appearing near a

video are appropriate keywords is not true in general. This can cause irrelevant words

to be placed into the keyword index, and decrease search result quality. Altavista’s

approach cannot be used unless a textual description is available. It is therefore not

applicable to general-purpose video.

Clearly, better video search technologies are required. Algorithms must be de-

veloped that can automatically extract semantic information from video using content

alone. Given an arbitrary video sequence, such algorithms would determine as much

information as possible, such as genre (sitcom, movie, sports program, etc.), filming

location characteristics (indoor or outdoor, time of day, weather conditions, etc.), iden-

tity of important objects, identity of people (politicians, movie stars, sitcom characters,

3

etc.), and human activity and interaction (running, laughing, talking, arguing, etc.).

This wealth of information could be used to better identify video sequences of interest

to a user.

Automatically extracting this information from unconstrained video is very chal-

lenging. Solving the underlying computer vision and artificial intelligence problems will

undoubtedly occupy these research communities for many years.

1.2 Motivation for extracting text from video

In addition to the features mentioned above, text appearing in a video sequence

can provide useful semantic information. Text occurring in video naturally gives clues

to the video’s content. Words have well-defined, unambiguous meanings. If the text in a

video sequence can be extracted, it can provide natural, meaningful keywords indicating

the video’s content.

Text occurring in video can be classified as caption text or scene text. Caption

text is artificially superimposed on the video at the time of editing. Caption text usually

underscores or summarizes the video’s content. This makes caption text particularly

useful for building a keyword index. Figure 1.1 presents some examples of caption text.

Scene text naturally occurs in the field of view of the camera during video capture.

Figure 1.2 presents examples of scene text occurring in video frames. Scene text occurring

on signs, banners, etc. gives natural indications as to the content of a video sequence.

4

(a) (b)

(c) (d)

(e) (f)

Fig. 1.1. Examples of caption text indicating the semantic content of video.

5

(a) (b)

(c) (d)

(e) (f)

Fig. 1.2. Examples of scene text indicating the semantic content of video.

6

1.3 Differences between video text extraction and document OCR

Optical character recognition (OCR) of document images has been studied ex-

tensively for decades [35]. Technology has evolved to nearly solve the document OCR

problem. Recognition accuracy rates higher than 99% are now achievable.

However, extraction of text from video presents unique challenges over OCR of

document images. Document images are usually scanned at high resolutions of 300

dots per inch or higher. In contrast, video frames are usually digitized at much lower

resolutions, typically 640×480 or 320×240 pixels for an entire frame. In addition, lossy

compression schemes are usually applied to digital video to keep storage requirements

reasonable. Video frames therefore suffer from color bleeding, loss of contrast, blocking

artifacts, and other noise that significantly increases the difficulty of accurately extracting

text.

Many characteristics of the text in a document image are known a priori. For

example, the text color in a document is nearly always black, and the background is

known to be uniform white. There is high contrast between the background color and

the text color. The orientation of the text can be assumed to be horizontal, or can

easily be inferred by analyzing the structure of the document. In contrast, text in video

can have arbitrary and non-uniform stroke color. The background may be non-uniform,

complex, and changing from frame to frame. The contrast between the background and

foreground may be low. Text size, location, and orientation are unconstrained.

The temporal nature of video introduces a new dimension into the text extraction

problem. Text in video usually persists for at least several seconds, to give human viewers

7

the necessary time to read it. Some text events remain unchanged during their lifetimes.

Others, like movie credits, move in a simple, rigid, linear fashion. Still others, like scene

text and stylized caption text, move and change in complex ways. Text can grow or

shrink, or character spacing can increase or decrease. Text color can change over time.

Text can rotate and change orientation. Text can morph from one font to another. Text

strings can break apart or join together. Special effects or a moving camera can cause

changing text perspective.

The problem of text extraction from video is therefore significantly more difficult

than the document image OCR problem. It is possible to simplify the problem by making

a priori assumptions about the type of video, or to extract only certain types of text.

However, in a general-purpose video indexing application, it is important to be able to

extract as much text as possible. Therefore text extraction systems must be applicable

to general-purpose video data and must be able to handle as many types of text as

possible.

1.4 Problem statement and scope of this thesis

This thesis discusses the extraction of unconstrained caption text from general-

purpose video. In particular, it addresses the extraction of types of text that have largely

been ignored by the work in the literature to date. These types of caption text include

moving text, rotating text, growing text, shrinking text, text of arbitrary orientation, and

text of arbitrary size. The focus of this work is on extraction of caption text, although

much of the work could be applied to extracting scene text as well.

Text extraction from video can be divided into the following subproblems:

8

• Detection: The text detection problem involves locating regions in a video frame

that contain text.

• Localization: Text localization groups the text regions identified by the detection

stage into text instances. The output of a good localization algorithm is a set of

tight bounding boxes around each text instance.

• Tracking: The text tracking problem involves following a text event as it moves

or changes over time. Together, the detection, localization, and tracking modules

determine the temporal and spatial locations and extents of text events.

• Binarization: The text binarization problem involves separating text strokes from

the background in a localized text region.1 The output of a binarization module

is a binary image, with pixels corresponding to text strokes marked as one binary

level and background pixels marked as the other.

• Recognition: The final stage is the text recognition problem, in which the text

appearing in the binarized text image is recognized. I do not discuss the recognition

problem in this thesis. It is assumed that once text has been binarized, any of the

many commercial document image OCR systems could be used for the recognition

stage.

1In previous publications (e.g. [3, 11]) we used the term segmentation to refer to the binariza-
tion problem. We used it in the context of segmenting individual text pixels from background
pixels. Unfortunately this term is used inconsistently in the text extraction literature. Some
authors (e.g. [6]) use this term to refer to the text region segmentation problem. Others (e.g.
[22]) use it to refer to the character segmentation problem, in which individual characters are
located. To avoid confusion, I will avoid the term segmentation in this thesis.

9

This thesis discusses the text detection, tracking, and binarization problems, and

presents the results of work toward their solutions. Chapter 2 describes the text detection

and localization problems. After a review of previous work in this area, two algorithms

are presented for detecting and localizing text in video frames. One of the algorithms

assumes that text is horizontal and within a size range; the other removes both of

these restrictions. A quantitative performance evaluation is performed to compare these

algorithms with others in the literature. In Chapter 3, the text tracking problem is

discussed. A tracking algorithm is presented that tracks rigid text events using MPEG

motion vectors for speed and robustness. A second tracking algorithm is presented that

removes the rigidity constraint, allowing for growing, shrinking, and rotating text to be

tracked. In Chapter 4, the binarization problem is discussed. A binarization algorithm

is presented that makes few assumptions about the nature of the text. It is designed

to work with text of arbitrary color appearing against complex backgrounds. Outputs

from this algorithm are compared to outputs from another binarization algorithm in the

literature. Finally, conclusions are drawn and areas for future work are identified in

Chapter 5.

10

Chapter 2

Detection and localization of unconstrained caption text

2.1 Introduction

A digital video is a sequence of still images, displayed rapidly to give the illusion

of continuous motion. Locating text in video therefore begins with locating text in

images. This chapter considers the problem of identifying text regions in images and

video frames.

The process of identifying text regions can be split into two subproblems: detec-

tion and localization. In the detection step, general regions of the frame are classified as

text or non-text. The size and shape of these regions differ from algorithm to algorithm.

For example, some algorithms classify 8× 8 pixel blocks, while others classify individual

scan lines. In the localization step, the results of detection are grouped together to form

one or more text instances. This is usually represented as a bounding box around each

text instance.

The remainder of the chapter discusses the detection and localization problems.

In Section 2.2, I give a survey of related work in the literature to date. In Section 2.3,

I present a fast algorithm for detecting and localizing horizontal caption text in MPEG

video. Section 2.4 extends this work to allow detection and localization of oriented text

and to improve accuracy. Finally, the results of a performance evaluation of this and

other detection algorithms in the literature are presented in Section 2.5.

11

2.2 Review of prior text detection and localization work

This section reviews past work in locating text in individual images and video

frames. I have classified these existing algorithms into five categories according to their

basic underlying approaches. Each type of approach is reviewed in the following sections.

2.2.1 Edge-based text localization

Text tends to have complex shapes and high contrast with the background. The

algorithms in this category exploit this by looking for edges in the image. Alignment,

size, and orientation features of the edges are used to discriminate text regions from

other “edgy” portions of an image.

• LeBourgeois [22] localizes text in complex grayscale images. After pre-processing,

image gradients are smeared in the horizontal direction. Connected components are

found in the resulting image to localize text regions into text lines. Text lines are

further segmented into individual characters by locating valleys in the horizontal

and vertical projection profiles.

• Sato et al [45] localize caption text in news broadcasts by looking for areas of

edge pixels that satisfy aspect ratio and other criteria. Text is assumed to be

light-colored, appear over a dark background, and have horizontal orientation.

• Agnihotri and Dimitrova [1] detect horizontal white, yellow, and black caption

text in video frames. A pre-processing step enhances edges and removes salt-and-

pepper noise. Edge pixels are found using a kernel and a fixed threshold. Frame

regions with very high edge density are considered too noisy for text extraction and

12

are disregarded. Connected components are found in the edge pixels of remain-

ing regions. Edge components are merged based on size, spacing, and alignment

heuristics to produce the localization result. This algorithm relies on many fixed

thresholds. It appears too restrictive and fragile for use in general-purpose video.

• Garcia and Apostolidis [9] locate horizontal text in color images. Edge pixel mag-

nitudes and locations are determined in each color plane. Text regions are selected

by identifying areas with high edge density and high variance of edge orientation.

This prevents incorrect identification of regions with “simple” edges uncharacteris-

tic of text. Morphological operations are performed to remove singletons and non-

horizontal regions. Localization is performed by finding connected components.

Candidate text regions are joined together or split apart based on the geometric

constraints of horizontal text.

• Qi et al [43] extract captions from news video sequences. Horizontal and vertical

edge maps for a video frame are determined using a Sobel operator. Alignment

of edges is analyzed to find horizontally-oriented text instances. Sample results

shown in the paper are quite noisy, suggesting that the algorithm is unsuitable for

general-purpose video.

2.2.2 Stroke-based text localization

Text is usually composed of strokes of uniform width and color. Algorithms in this

category look for pixel runs of similar color that may correspond to character strokes.

13

The distinction between edge- and stroke-based localization techniques is similar to the

distinction between edge- and region-based image segmentation [18].

• Ohya et al [38] threshold gray level images and localize text regions by looking for

strokes of high contrast, uniform width, and uniform gray level. An OCR stage is

used to validate the detection. If a localized region cannot be recognized with high

confidence by the OCR module, it is discarded.

• Lee et al [24] locate vertical and horizontal runs of pixels in a quantized gray scale

image. Runs having high contrast with neighboring pixels are assumed to lie on

the boundary of a text instance. Connected segments are merged to form character

candidate regions. Post-processing removes non-characters based on size, aspect

ratio, and contrast heuristics. Special consideration is given to differentiate “1” and

“l” characters from solid non-text connected components. The algorithm is tested

on images of identification numbers appearing on the sides of railroad boxcars.

• Lienhart [28] applies the split-and-merge image segmentation technique [14] to

locate text in video frames. Local color variance in the R’G’B’ space [41] is used as

the homogeneity criteria for segmentation. Segmented regions are chosen based on

text-like size, spacing, and contrast heuristics. Example detection results shown in

the paper show many false alarms. This is mitigated by a custom OCR module that

discards candidate regions that cannot be recognized with a reasonable confidence.

Inter-frame analysis is performed to eliminate regions of noise persisting for just a

single frame.

14

• Shim et al [48, 49] propose a method to detect caption text in video frames. Regions

with homogeneous intensity are identified, positive and negative images are formed

by double thresholding, and heuristics are applied to eliminate non-text regions.

Text is assumed to be either black or white. Inter-frame analysis is performed for

added robustness.

• Gargi et al [10] describe an algorithm for locating horizontal text strings in video

frames. Their method looks for horizontal streaks of similar color that may corre-

spond to character strokes. Size and aspect ratio heuristics are applied to reduce

false alarms.

2.2.3 Local texture-based localization

Algorithms in this category examine local texture features within small regions

of an image. Text is assumed to have a distinct texture. If the texture features are

consistent with the characteristics of text, all pixels in the region are marked as text.

• Wu et al [57] describe a scheme for finding text in images. Texture segmentation is

used to locate potential text regions. Edge detection is then applied to find candi-

date text strokes, which are merged to form text regions. Their algorithm is tested

against a dataset of images with text appearing on relatively simple backgrounds.

• Schaar-Mitrea et al [46] propose an algorithm to find overlaid text and graphics

in video frames. Blocks of size 4 × 4 pixels are examined. The number of pixels

within the block having similar gray levels is counted. If this count is greater

15

than a threshold, and if the dynamic range of the block is found to be less than a

threshold or greater than another threshold, the block is classified as text.

• Wong [56] locate text in the luminance plane of a video frame. A 1 × 21 pixel

window is passed over the image, and the difference between the maximum and

minimum gradients within the window are determined. Gradient zero-crossings

are found and the mean and variance between zero-crossings are computed. Pixels

under the window are marked as text if the gradient difference is high, the variance

is low, and the mean is within a reasonable range. These text lines are merged

together into localized text regions.

2.2.4 Color clustering-based localization

Algorithms in this category try to simplify image content by performing color

clustering. The assumption is that text pixels and the background will fall into separate

color clusters. Features of the clustered image are examined to locate text regions.

• Jain and Yu [17] presents a method to locate text in pseudo-color images on the

web, full color images, and color video frames. Quantization and color clustering

are performed in the RGB color space. It is assumed that the largest color cluster is

the background (non-text) region and the other clusters represent text. Connected

components in the foreground colors are found and are grouped together into text

lines using alignment, spacing, and projection profile heuristics. The example video

images shown in the paper are relatively simple, yet the algorithm inexplicably

16

misses several prominent text instances. It is not clear that the assumption that

all background pixels are clustered together is true for unconstrained video.

• Mariano [31] performs simultaneous detection and binarization of horizontal text

regions by performing color clustering on individual scan lines. Streaks on adjacent

scanlines belonging to the same color cluster are assumed to be character strokes.

The algorithm fails if text is even slightly oriented off of horizontal. It gives good

results for horizontal text, but its large computation cost makes it prohibitive.

2.2.5 Neural-network based localization

Some researchers have applied neural networks to the problem of detection and

localization of text regions. Two sample papers are mentioned here.

• Jeong et al [19] apply neural networks to find text captions in Korean news broad-

casts. Detection is performed on sub-sampled images in a hierarchical fashion

to detect text of different sizes. Character spacing, text line spacing, horizontal

alignment, and aspect ratio heuristics are applied in post-processing.

• Li et al [27] apply wavelets and a neural network to find text. A window of 16 ×

16 pixels is passed over the image. The wavelet transform of the pixels under

the window is taken, and moments of it are used as input into a neural network

classifier. If the classifier indicates a text region, all pixels under the window

are marked as text. A horizontal bounding box is determined for each connected

component of text pixels. This process is repeated on different scales to allow

detection of text of different sizes.

17

2.2.6 Observations on text detection literature to date

Unfortunately, it is difficult to determine the performance of detection and lo-

calization algorithms presented in the literature just by reading the papers. Many of

the “experimental results” sections of the above papers consist simply of the proposed

algorithm applied to a few sample images. It is impossible to know whether the sample

outputs represent the typical performance of the algorithm, or if carefully-selected result

images have been presented. None of the above papers perform a comparative perfor-

mance evaluation. Some present an absolute quantitative performance evaluation, but

because no standard test dataset has been adopted, it is impossible to compare them.

To address this issue, we have carried out a performance evaluation of several of the

most promising algorithms [5]. This evaluation is discussed in detail in Section 2.5.

Based on this evaluation and information presented in the papers, I observe the

following about the work in the literature to date. Many algorithms make a priori

assumptions about the text to be extracted (e.g. strong restrictions on text color, size,

location, etc.). This makes them unsuitable for use on general-purpose, unconstrained

video. Other algorithms work well on images with relatively simple backgrounds, but

give high false alarm rates when applied to complex images. Most algorithms have high

computation costs. No algorithm so far detects oriented (non-horizontal) text.

The observation that different algorithms make different assumptions about the

nature of text in video sparked the idea that outputs of multiple algorithms could be

combined to give a more accurate output than any individual algorithm. Please see [4]

18

and [11] for a discussion of our work in this area. Detection algorithm fusion is not

further discussed in this thesis.

In the next section, a computationally-efficient algorithm is presented that uses

the DCT coefficients of MPEG video frames to detect text. In Section 2.4, another

DCT-based algorithm is presented that can detect text with non-horizontal orientation.

In Section 2.5, these algorithms are compared with others in the literature using a

quantitative performance evaluation.

2.3 Algorithm A: A DCT-based algorithm for caption text detection

2.3.1 Chaddha94

Chaddha [6] proposed the following simple algorithm for discriminating text re-

gions from non-text regions in document images. First, the block-wise Discrete Cosine

Transform (DCT) is performed on the image. A block size of 8x8 pixels was used. In

each block, the sum of the absolute values of a subset of DCT coefficients is computed

to give an energy value for the block. The optimal subset of DCT coefficients were em-

pirically determined to be coefficients 3, 4, 5, 11, 12, 13, 19, 20, 21, 43, 44, 45, 51, 52, 53,

59, 60, and 61, in row-major order. This energy is a simple measure of local texture. If

the energy is greater than a threshold, the block is declared to contain text. Otherwise,

it is marked as a non-text block.

Chaddha’s application was detecting text regions in JPEG-compressed images

of documents. In a performance comparison with detection schemes using other image

features, the DCT-based method was found to give the most accurate results. It was also

19

found to be the most computationally efficient. Explicitly performing the DCT transform

is not required because the coefficients are already available in JPEG-compressed images.

The method uses a fixed threshold parameter. This is possible in a document

image application because it is known a priori that the non-text regions are relatively

smooth and have low texture energy. There is a wide gap between the texture energy of

non-text blocks and text blocks in document images. The algorithm is therefore not very

sensitive to the threshold value. An optimal threshold empirically determined on one

document image dataset is likely to give good results on another dataset of document

images.

2.3.2 Application to video frames

I applied the DCT-based text detection approach described above to intra-coded

(I) frames of MPEG-1 video sequences. Like JPEG images, I-frames are encoded using

the block-wise DCT transform, so the DCT coefficients are available in the bit stream.

Detecting text in broadcast video frames is much more difficult than in images

of documents. In unconstrained video frames, non-text regions may be quite complex

and have high texture energy. The gap between the texture energy of text and non-text

blocks is small.

Experimentation showed that the DCT text detection method gave acceptable

results on video frames once an appropriate threshold was chosen. Unfortunately, the

optimal threshold value varied widely from frame to frame. Figure 2.1 illustrates this

sensitivity to the choice of threshold. Two sample video frames are shown in images (a)

20

and (b). The optimal threshold for each image was determined empirically by exhaus-

tively testing all possible thresholds and choosing the one that minimized the difference

between precision and recall (see Section 2.5 for details on the evaluation criteria). The

optimal thresholds were found to be 310 for image (a) and 102 for image (b). Acceptable

results are produced when the optimal thresholds are used, as shown in images (c) and

(f). But the lower threshold produced many false alarms for image (a), and the higher

threshold caused many missed text blocks when applied to image (b). Further, even in

the outputs obtained using the optimal thresholds, a high false alarm rate is observed.

2.3.3 Region-growing to increase detection accuracy

I observed that the blocks with the highest DCT texture energy in a frame usually

belong to text regions. Also, at least one block in each text region has very high en-

ergy. These observations inspired a region-growing scheme that decreases the algorithm’s

reliance on fixed thresholds.

Region growing is carried out in the following manner. First, blocks with DCT

energy above some threshold Th are marked as text. A threshold variable T is initialized

to Th. Then the following is performed iteratively. T is decremented by some step

value ∆T . Blocks with thresholds above T are marked as text if at least one of their

8-neighbors has already been marked as text in an earlier iteration. Iteration continues

until T reaches some low threshold Tl. By experimentation, I found Th = 150, Tl = 30,

and ∆T = 10 worked well.

Region-growing improves detection accuracy in two ways. First, it suppresses

false alarms, because regions may only grow around “seed” blocks of high energy that

21

(a) (b)

(c) Threshold = 310 (d) Threshold = 310

(e) Threshold = 102 (f) Threshold = 102

Fig. 2.1. Text block detection by thresholding DCT coefficient energies. (a) and (b):
Two sample video frames. (c) and (d): Results of detection with threshold at 310. (e)
and (f): Results of detection with threshold at 102.

22

are very probably text. Second, fewer missed-detect blocks are observed because lower

thresholds are reached during iteration.

2.3.4 Heuristic filtering

Heuristics are applied to reduce blocks incorrectly identified as text. Since hori-

zontal text orientation is assumed, it is reasonable that a text instance should be more

than 8 pixels wide. Therefore, candidate text blocks with neither a left nor a right text

block neighbor are marked as non-text. Candidate text blocks without any 8-neighbors

are also discarded as noise.

I observed that many false alarms are due to steep luminance “cliffs” in the image.

The cliffs are edges whose gradients are so high that they cause very high DCT energies.

This effect is visible in Figure 2.1(e), in which blocks along the boundary between the

blue background and the scene have been incorrectly marked as text. The following

heuristic is used to remove such false alarms. A block marked as text is checked if its

coefficient energy is above some threshold Tc. Then, the average of the DC coefficients1

of the three blocks to the left are computed. Similar averages are found for the three

blocks to the left, top, and bottom. If the absolute difference between the averages to the

left and right are greater than some threshold Td, or if the absolute difference between

the averages to the top and bottom are greater than Td, then the block’s high DCT

energy is probably due to an image cliff. The block is marked as non-text. Empirically,

I determined that Tc = 100 and Td = 300 give good results.

1The DC coefficient of a block is its first DCT coefficient. It indicates the average intensity
of the pixels in the block.

23

2.3.5 Text box localization

Localization is performed by finding connected components of detected text blocks.

Bounding text boxes are found around each connected component. Spatial heuristics

are then applied to remove boxes corresponding to non-text regions. Boxes with non-

horizontal aspect ratios are discarded.

2.3.6 Results and Discussion

In this section I present output of this algorithm applied to sample video frames.

A quantitative evaluation of this algorithm is presented in Section 2.5. All frames shown

in this section were extracted from MPEG-1 videos with spatial resolution of 320 ×

240 pixels. Videos were captured from a variety of television channels, including CNN

and foreign news broadcasts. Note that the foreign news broadcasts are a challenging

dataset for detection algorithms, because of their lower quality and contrast. Refer to

Section 2.5.1 for further details about our video dataset.

Figure 2.2 presents example localization results on a variety of video frames. The

algorithm can detect text of different scripts, as demonstrated by image (a). It is even

able to detect the very low-contrast “SCOLA” text appearing in images (a), (b), and

(c). There are some false alarms along the top edge of image (d). These false alarms

are caused by noise along this edge due to imperfect video capture. The algorithm is

able to detect the text in a very small font size in image (e), although the localized text

rectangle is a bit loose. Some small false alarms appear in image (f), but these could be

easily suppressed by adding a minimum text box size heuristic.

24

(a) (b)

(c) (d)

(e) (f)

Fig. 2.2. Output of Algorithm A on video frames with caption text.

25

Although my focus is on caption text, the algorithm correctly detects some scene

text as well. Figure 2.3 shows this. In image (a), the scene text instance “Swiss Bank”

has been properly localized. But the low-contrast scene text instances in images (b) and

(c) have been missed. Note that in all three frames, all caption text has been detected,

and there are no false alarms.

Figure 2.4 demonstrates some typical failures of the detection and localization

algorithm. The algorithm exhibits two false alarms in image (a). The texture of the

plant in this case is similar to that of text. Image (b) demonstrates a more severe case

of false alarms. The high texture energy of the crowd scene has caused the algorithm to

find the entire frame as one large text box. This could be solved by raising the Th and

Tl thresholds. This example demonstrates that, while the region-growing thresholding

scheme reduces the sensitivity to fixed thresholds, it does not eliminate the sensitivity

entirely. Images (c) and (d) show two examples of text missed due to limitations of the

algorithm. The text region in image (c) is not localized properly because it violates the

assumption of horizontal text. The text in image (d) causes difficulty because of its large

stroke width. A consequence of using an 8 × 8 pixel block size is that the text stroke

width must be less than about 8 pixels for proper detection. This explains the incorrect

localization observed in image (d), where the character strokes are about 20 pixels wide.

I have shown that Algorithm A performs well on a variety of text instances in

a variety of types of video. Another advantage to this algorithm is its relatively low

computation cost. In fact, the algorithm requires only the DCT coefficients of a video

frame. Since the DCT coefficients of I-frames are immediately available in the MPEG bit

26

(a) (b)

(c)

Fig. 2.3. Output of Algorithm A on video frames with caption text.

27

(a) (b)

(c) (d)

Fig. 2.4. Examples of poor-quality detection results from Algorithm A.

28

stream, the video file need not be fully decompressed. My unoptimized implementation

runs at a real-time rate of over 30 I-frames per second on an SGI Octane workstation.

In some applications, it may be sufficient to perform text detection on just I-

frames, since they occur relatively frequently in the MPEG stream (usually about three

times a second) and text events tend to persist for at least several seconds. To process

predictive (P- and B-) frames, it is necessary to reconstruct the DCT coefficients after

motion compensation. The simple approach used in my implementation completely

decodes each frame, then uses a fast DCT algorithm [47] to compute the coefficients.

This is a naive implementation, but it still achieves a speed of 10 frames per second. For

faster performance it is possible to perform motion vector compensation directly in the

frequency domain [32].

2.4 Algorithm B: An algorithm for detecting caption text of arbitrary

size and orientation

In the previous section, an efficient DCT-based text detection and localization

algorithm (Algorithm A) was presented. While it gave good results on many video

frames, I also noted the algorithm’s limitations. It is unable to detect text having non-

horizontal orientation. It relies on fixed energy thresholds that cause many false alarms

in some scenes. It is unable to detect text with large stroke widths. In this section,

modifications to the above algorithm are presented that circumvent these limitations.

29

2.4.1 Choice of DCT coefficients

Algorithm A used the coefficients found to be optimal by Chaddha [6]. However,

Chaddha’s application was document images, and a dataset of just five images was used

for the optimization. The coefficients found in this manner may not be optimal for

general-purpose video frames.

Unfortunately, finding the optimal coefficients is non-trivial. An exhaustive search

would require trying all combinations of between 1 and 64 coefficients, or
∑64
i=1

(64
i

)
≈

1.8× 1019 possibilities. An alternative is suggested in [6]. The average absolute value of

each coefficient for both text and non-text blocks is determined. Coefficients are sorted

by the difference between text and non-text sums. Coefficients are then added one-by-

one in the sorted order until the optimal choice of coefficients is found. This procedure

requires trying at most 64 combinations of coefficients.

I performed the optimization in this manner using 9,329 frames of video from our

ground-truthed dataset described in Section 2.5. This represents a much larger dataset

than in Chaddha’s optimization. His dataset had 4,800 blocks total; I used 9,122,279

blocks (539,941 text blocks, 8,582,338 non-text blocks). Figure 2.5 compares the average

absolute value of each coefficient for text and non-text blocks. Using the procedure

described above, the optimal coefficients were determined to be 1, 2, 3, 4, 5, 8, 9, 10, 11,

12, 16, 17, 18, 19, 24, 25, 26, 32, and 40, in row-major order.

2.4.2 Detection of text blocks

The above coefficient choice optimization was performed for horizontal text. Be-

cause the 2-D Discrete Cosine Transform is separable, transposing the matrix of pixel

30

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

DCT coefficient number

av
er

ag
e

ab
so

lu
te

 v
al

ue

text blocks
nontext blocks

Fig. 2.5. Average DCT coefficient energy for text and non-text DCT blocks.

31

values of a block in the spatial domain corresponds with the transpose of the DCT co-

efficient matrix as well. It follows that vertical text can be detected by first taking the

transpose of a block’s DCT coefficient matrix, and then using the same coefficients de-

termined during the optimization for horizontal text. I have observed that text oriented

between horizontal and vertical has a combination of horizontal and vertical DCT text

energy.

These observations motivate the following method for detecting text blocks. For

each DCT block, the horizontal text texture energy TTEh is computed by summing the

coefficients listed above. Similarly, the vertical text texture energy TTEv is computed

by transposing the DCT coefficient matrix, and then summing the above coefficients.

Instead of thresholding individual blocks, horizontal and vertical groups of three blocks

are examined. This encourages blocks with high TTEh to grow into horizontal text

boxes, and blocks with high TTEv to grow vertically. This is accomplished in the

following way. The average of the TTEh values for a block and its two horizontal

neighbors is computed. This is added to the average of the TTEv for the block and its

vertical neighbors. If the total is greater than a threshold, the block is marked as text.

That is, the block at row i and column j in an image is marked as text if

TTEh(i, j − 1) + TTEh(i, j) + TTEh(i, j + 1)

3
+

TTEv(i− 1, j) + TTEv(i, j) + TTEv(i+ 1, j)

3
> T

32

2.4.3 Choice of threshold

Next we consider how to choose the threshold T . As mentioned earlier, while

using a fixed threshold may be possible for document images, I found that the optimal

threshold varies widely from one video sequence to the next. Algorithm A employed

a region-growing scheme that reduced the reliance on the thresholds. However, fixed

thresholds were still used, and this caused poor results on some video frames.

In informal experimentation, I have observed that the optimal threshold is fairly

uniform across all frames of the same video sequence. Also, different video sequences of

the same general type have similar optimal thresholds. This suggests that the optimal

threshold depends on general characteristics of the video that could be computed or

known a priori. For example, perhaps one threshold is best suited for news broadcasts,

while another is better for commercials. The genre of video may be known a priori,

or an algorithm could be used to automatically determine the genre (e.g. [15]). I also

observed that low-level image features could also be used to predict optimal threshold.

Specifically, I hypothesized that video contrast could be used.

This hypothesis was tested as follows. First, the optimal threshold for each video

sequence in our dataset was determined by exhaustively trying all possible thresholds

within a reasonable range (again according to the experimental protocol and evaluation

criteria discussed in Section 2.5). The average contrast per frame for each video sequence

was also computed. The contrast measure used was the difference between the highest

and lowest gray level in the luminance plane of a frame.

33

Figure 2.6 plots the optimal threshold versus the average frame contrast. The

figure indicates that there is a strong linear correlation between contrast and ideal

threshold. The best-fit line that minimizes least-square-error was found to be about

T (c) = 23.8c − 2018.5 for a given average contrast c. This result suggests that it is

possible to predict a good threshold based only on the general characteristics of a video

sequence.

Note that this analysis was carried out on a relatively small dataset of 11 sequences

and 11000 frames total. More experimentation would be necessary to determine that this

simple linear relationship holds for a larger dataset. Also, the optimal threshold may be

better correlated with video sequence features other than average frame contrast. For

the work in this thesis, however, we use only contrast to predict the threshold. The

threshold for each sequence is computed using the T (c) expression given above.

2.4.4 Hierarchical subsampling to detect different sizes of text

It was noted earlier that Algorithm A is unable to detect text with stroke width

larger than the DCT block size. This problem can be circumvented by analyzing a

subsampled version of the frame. For example, text with strokes up to 16 pixels wide

can be detected in a frame subsampled to half the original size.

Subsampling is incorporated into the algorithm as follows. The text block de-

tection algorithm is applied to the image. Then, the image is subsampled to half its

dimensions, and the 8× 8 block classification algorithm is applied again. A block at this

level corresponds to four blocks in the original image. For each block classified as text in

the subsampled image, the corresponding four blocks in the original image are marked

34

140 150 160 170 180 190 200 210 220 230
1500

2000

2500

3000

3500

average frame contrast

op
tim

um
 th

re
sh

ol
d

Fig. 2.6. Optimal threshold versus average video frame contrast.

35

as text. Subsampling is continued iteratively until some lower bound on the frame di-

mensions is reached. I have observed that proceeding to a resolution of 160×120 ensures

that text of all reasonable sizes is found. This corresponds to two hierarchical levels for

an original frame size of 320 × 240 and three levels for a frame size of 640 × 480.

My present implementation uses a naive approach to the subsampling. The origi-

nal image is converted to the spatial domain, subsampled, and then the DCT transform

is taken. A much more efficient approach is to perform subsampling directly in the DCT

domain. A method for doing this is described in [8].

2.4.5 Localization of text with arbitrary orientation

Once blocks of a frame have been classified as text or non-text, we wish to group

the blocks into text instances. This is done by determining tightly-fitting bounding

rectangles for each text instance. In the case of oriented text, the bounding rectangle

should be oriented at the appropriate angle. As was noted in Section 2.2, no work so far

in the literature has considered the problem of localizing non-horizontal text.

We propose an iterative greedy algorithm for separating text instances and de-

termining tight bounding boxes around them. First, connected component analysis is

performed on the blocks marked as text. Orthogonal bounding rectangles are computed

for each component. Then, the bounding rectangles are iteratively refined by moving,

changing size, and changing orientation. Each iteration of the greedy algorithm attempts

to increase the criteria

G = Pt × (1− Pnt)

36

where Pt is the percentage of the detected text pixels that lie underneath the rectangle,

and Pnt is the percentage of the rectangle’s area covering non-text pixels. During each

iteration, each bounding rectangle is visited. One of the following actions is taken,

according to which produces the maximum G:

• Rectangle is left unchanged

• Rectangle height is incremented or decremented by one block

• Rectangle width is incremented or decremented by one block

• Rectangle is moved one block to the left or right

• Rectangle is moved one block up or down

• Rectangle is rotated by 15 degrees clockwise or counter-clockwise

Once all rectangles have been visited during an iteration, overlapping rectangles

are merged together if doing so does not lower the overall value of G.

The iteration continues until convergence. Simple heuristics can then be applied

to discard non-text regions based on rectangle dimensions. In my implementation, we

discard rectangles whose length or width is less than 8 pixels. Very few text instances

are less than this size, and even if present, it is doubtful that an OCR module could

recognize them accurately.

2.4.6 Results

Figure 2.7 presents sample results of the algorithm applied to 320 × 240 pixel

MPEG-1 video frames captured from television channels. The rectangles superimposed

37

on the video frames indicate the results of the text localization. Image (a) demonstrates

the algorithm’s effectiveness on simple, horizontal caption text. Note that the algorithm

works on a variety of language scripts. Images (b), (c), and (d) show examples of

detection of both horizontal text and text oriented at different angles. Image (c) includes

some text missed by the algorithm. This text is less than 8 pixels tall and thus was

discarded by our size heuristic.

2.5 Performance Evaluation

As noted in section 2.2, there have been no quantitative, comparative performance

evaluations of text detection algorithms presented in the literature. In this section, I

present the results of a quantitative evaluation of the above two algorithms and four

others from the literature. We have presented a similar evaluation in [5].

2.5.1 Video datasets

Two datasets were used in the evaluation. Dataset A contained mostly static cap-

tion text typical of news broadcasts. Dataset B consisted of commercials that included

moving, rotating, growing, and shrinking text. Details of the datasets are as follows:

• Dataset A consisted of 15 MPEG-1 video sequences with 320× 240 pixel resolu-

tion. There were a total of 10299 frames (about 175 megabytes of data). There were

156 caption text events and 144 scene text events in the video data. The dataset

represented a wide variety of video captured from television broadcast channels.

Video clips included newscasts from Turkey, United Arab Emirates, Japan, and

Germany, CNN’s The World Today program, CNN’s Business Unusual program,

38

(a) (b)

(d) (e)

Fig. 2.7. Examples of detected text of various orientations.

39

ABC’s World News Tonight, and commercials from various channels. This di-

verse collection of video contained a wide variety of text fonts, colors, placements,

languages, and scripts.

• Dataset B consisted of 1 MPEG-1 video sequence with 320×240 pixel resolution.

There were a total of 916 frames (about 26 megabytes of video data), and 25 caption

text events. The dataset consisted of portions of commercials captured from various

television channels. A wide variety of text sizes and colors was included in the

dataset. All captions were in English. In addition to static text, text events

undergoing rotation and size changes were included.

Video sequences for both datasets were captured at 30 frames per second by

either a CosmoCompress motion-JPEG hardware compression board on an SGI Indy

workstation, or by an ICE motion-JPEG hardware compression board on an SGI O2

workstation. The movies were converted to MPEG-1 using SGI’s dmconvert software

encoder. The compressed bit rate was 4.15 megabits per second. The group of pictures

(GOP) size (i.e. distance between adjacent I-frames) was 12 frames.

Dataset A was ground-truthed by Jin Hyeong Park, Vladimir Mariano, Sameer

Antani, and me using the ViPER tool from the University of Maryland [7]. Dataset B

was ground-truthed my me. In each frame, tight bounding rectangles were drawn around

any text regions (regardless of whether the text could actually be read).

40

2.5.2 Evaluation criteria

It is not obvious how to design a good evaluation criteria for text detection and

localization algorithms. Most evaluations presented in the literature (e.g. [17]) give eval-

uation results as a single percentage called “accuracy.” This indicates the percentage of

text instances detected by the algorithm. However, this accuracy statistic is misleading,

because it does not capture the false alarm rate. For example, using this evaluation

strategy, an algorithm that simply places text boxes around the entire area of every

frame would achieve 100% accuracy. It is also not clear how to decide whether an al-

gorithm has detected a text event or not. For example, has the algorithm detected the

text in Figure 2.4(d)? It has marked parts of the text, but not all of it. Unfortunately

these details are rarely specified in papers in the literature. From communications with

authors, it appears that usually a human’s subjective judgment is used to determine

whether the algorithm reasonably detected a given text instance or not.

We desire an evaluation criteria that rewards algorithms for tightly localizing text

events. Algorithms should be penalized for failing to detect text or for detecting only a

portion of text. They should also be penalized for false alarms, or for loose localization

of text. Further, the criteria should be objective and automatically computable by a

program.

We perform a pixel-by-pixel match of the ground truth against the output of a

localization algorithm. A pixel is counted as a correct detect if it is marked as text in

the ground truth and in the algorithm’s output. A false alarm appears in the algorithm

output but not the ground truth. A missed detect appears in the ground truth but not

41

the algorithm output. To perform the evaluation, the number of correct detect, false

alarm, and missed detect pixels are counted. The results are expressed as recall and

precision, where:

Recall =
correct detects

correct detects+missed detects

Precision =
correct detects

correct detects+ false alarms

Intuitively, recall expresses the ability of an algorithm to detect text. A recall of

100% indicates that the algorithm found all text in the dataset. Precision is a measure

of the tightness of the localization. A precision of 100% indicates that the algorithm’s

output exhibited no false alarm pixels. Note that there is a trade-off between recall and

precision. For example, an algorithm’s parameters can be adjusted to increase recall,

but this will generally cause precision to decrease.

The relative importance of recall and precision depends on the application. For

this evaluation, I will assume that recall and precision are equally important. Therefore

I will compare algorithms at the point where parameters have been adjusted such that

recall and precision are equal.

2.5.3 Experimental protocol

Algorithms A and B presented in this chapter were evaluated along with four

other promising algorithms from the literature. This included the work of Gargi et

al [10], LeBourgeois [22], Mariano et al [31], and Mitrea et al [46]. Source code provided

by the authors was used for the Gargi and Mariano algorithms. The LeBourgeois and

42

Mitrea algorithms were implemented by Ryan Keener, Albert Roberts, and me based on

the algorithm descriptions in the papers.

The evaluation was carried out as follows. Each algorithm requires one or more

fixed parameters. The parameters were optimized on Dataset A by varying each pa-

rameter over a reasonable range. For each combination of parameters, the evaluation

was performed on the full 10299 frames. The combination of parameters that gave the

highest recall and precision under the constraint recall = precision was declared opti-

mal. The recall and precision obtained using this set of parameter values were used to

represent the performance of the algorithm.

Our ground truth contains localization data for both caption and scene text.

Since the focus of this thesis is caption text, algorithms were tested only on caption text.

Algorithm output was ignored for regions marked as scene text in the ground truth.

Therefore algorithms were neither penalized nor rewarded for missing or finding scene

text.

2.5.4 Results

Table 2.1 presents the results of the evaluation for Dataset A. It is observed that

Algorithm B exhibits the best performance, followed very closely by Algorithm A. The

Mariano algorithm was next best, followed closely by the Mitrea algorithm.

Table 2.2 presents the evaluation results for Dataset B. Two sets of recall and

precision statistics are given. The evaluation was first performed using the parameter

values determined as optimal over Dataset A. These results are shown in the second and

third columns of Table 2.2. The parameter values for each algorithm were then varied

43

to find the optimal parameter sets for Dataset B. These results are shown in the fourth

and fifth columns of the table. Note that Mariano’s algorithm was not included in these

runs, because our dataset violated its assumption that all text is perfectly horizontal.

It is observed that Algorithm B gives by far the best performance on Dataset

B, with an optimal precision and recall of 74%. Further, the results indicate that the

optimal parameters for Algorithm B on Dataset A are very close to optimal on Dataset

B. This suggests that Algorithm B is relatively insensitive to the value of its parameters.

The LeBourgeois, Mitrea, and Gargi algorithms exhibit optimal precision and recalls of

around 49%, about 25 percentage points lower than those of Algorithm B. The results

also suggest that these algorithms are more sensitive to the values of their parameters.

Algorithm A gives poor performance on this dataset. This is because much of the text

in Dataset B is relatively large, violating Algorithm A’s assumption that the text size is

comparable to the 8× 8 pixel block size.

I observe that Algorithm B has shown the best performance on both datasets. It

performs slightly better than other algorithms in the literature on a dataset containing

mostly static, horizontal text. It performs significantly better than other algorithms

on a dataset including non-horizontal text that rotates, changes size, and moves over

time. This is an encouraging observation, because it demonstrates that it is possible to

design text detection algorithms that make fewer assumptions about text in video while

maintaining the accuracy typical of algorithms found in the literature. It is hoped that

in the future, other researchers will attempt to reduce the restrictions their algorithms

place on the types of text that can be detected.

44

The results of the quantitative performance evaluation indicate that precision

and recall of state-of-the-art detection and localization algorithms are quite low. It is

disappointing to see precision and recall values under 50%, when we would like values

close to 100%. This highlights the need for further research in designing more accurate

algorithms that can detect and localize text in general-purpose video. However, there

are two caveats to our performance evaluation that should be kept in mind. First,

our evaluation criteria is very strict. An algorithm must generate output that exactly

matches the ground truth in order to achieve perfect precision and recall. In an actual

application, it probably does not matter if a localization algorithm’s output is off by a

few pixels. Second, our dataset is extremely challenging. The ground truth has been

marked with all caption events that could be detected by a human, even if they could

not be read. Such text may not even be useful to an application.

45

Algorithm Recall Precision
Algorithm A 46% 45%
Algorithm B 46% 48%
Gargi 29% 30%
LeBourgeois 33% 34%
Mariano 40% 39%
Mitrea 37% 37%

Table 2.1. Detection/localization algorithm performance for caption text on Dataset
A. Dataset A contains mostly horizontal, static text events.

Algorithm Preset parameter set Optimal parameter set
Recall Precision Recall Precision

Algorithm A 36% 36% 36% 36%
Algorithm B 73% 75% 74% 74%
Gargi 37% 62% 46% 48%
LeBourgeois 25% 73% 49% 49%
Mitrea 37% 58% 47% 48%

Table 2.2. Detection/localization algorithm performance for caption text on Dataset
B. Dataset B includes text that moves, rotates, grows, and shrinks over time. Results
are shown both for when the parameters were set to values found optimal for Dataset
A, and when set to those found optimal for Dataset B.

46

Chapter 3

Text tracking

3.1 Introduction

Text in video persists for multiple frames. A typical text event lasts for at least

a second to allow human viewers adequate time to read it. At the NTSC frame rate of

about 30 frames per second, even a one-second text event appears in 30 video frames.

The text event may remain stationary, in which case the spatial location of the text is the

same in all frames. It may exhibit a slow, linear motion, as typified by scrolling movie

credits. Or it may move quickly in a complex trajectory, it may change size or shape,

it may undergo perspective distortion, it may rotate, or it may exhibit a combination of

these behaviors. Figure 3.1 shows examples of text events and their behaviors over time.

A tracker is necessary to follow text as it moves. A text tracker could have several

purposes in a video indexing system:

• Determination of text events: We would like to build an index of the text

occurring in video for content-based retrieval purposes. The index would not in-

clude entries for individual frames, but instead for each text event that appears,

persists for some time, and then disappears. That is, we would like to find the

temporal location and extent of a text event, as well as the spatial location and

extent in each frame. The tracker can be used to combine the localized text regions

of individual frames into text events.

47

(a)

(b)

(c)

Fig. 3.1. Examples of caption text behavior over time. (a): Stationary text, (b): Scrolling rigid text exhibiting simple, linear
motion, (c): Text changing size with time.

48

• Verification of text localization: Since it is assumed that text persists for

multiple frames, a region localized as text in one frame but not in neighboring

frames indicates that it is a false alarm and should be discarded. Assuming all

text is stationary, a candidate region could be discarded if no region exists at the

same location in the neighboring frames. But this would fail for moving text. A

text tracker is required to verify that motion in the localization output is consistent

with motion in the video.

• Human-assisted text event indexing: State-of-the-art text detection algo-

rithms may not perform well on certain datasets (e.g. very noisy video data). In

these cases, a human operator could mark a text region in the first frame in which

it appears. The tracker could then automatically determine the location of the

text in subsequent frames.

This chapter considers the text tracking problem. In Section 3.2, prior work

related to text tracking is presented. Then, two algorithms representing two different

approaches to text detection are described. In Section 3.3, I describe a fast algorithm for

tracking rigid text events exhibiting linear motion in MPEG video. This algorithm can

operate independently to support an operator-assisted environment as described above.

In Section 3.4, an algorithm is presented for tracking text whose size, position, and

orientation may be changing over time. This algorithm requires tight integration with a

text detection algorithm, like those presented in Chapter 2.

49

3.2 Review of prior work

While there has been a significant amount of work on the extraction of text in

images and video frames, very little text detection work is found in the literature that

considers the temporal nature of video. This section surveys the few approaches that do

include temporal analysis.

Shim et al [48, 49] uses a simple inter-frame analysis technique to reduce false

alarms. Individual frames are first processed by finding regions with homogeneous inten-

sity, forming positive and negative images by double thresholding, and applying heuristics

to remove non-text regions. Then, the candidate text regions in groups of five adjacent

frames are considered. Text is assumed to be stationary. A candidate text region is

discarded if regions of similar position, intensity, and shape do not appear in the other

four frames. Note that this approach would incorrectly discard moving text regions.

Lienhart [29, 28] takes a similar approach, but allows text motion. Individual

frames are segmented using properties of local color histograms and choosing text candi-

date regions using heuristics. Temporal analysis is used to refine detection results. For

each potential text region detected in a frame, the text candidate regions in the next

frame are searched for one of identical size, color, and shape. If such an area is not

found, the region is discarded as non-text. This approach assumes text remains rigid. It

also requires that text detection is applied to each frame, so it is not applicable to the

operator-assisted application mentioned above.

Li and Doermann [25, 26] describe a simple algorithm for tracking rigid, moving

text in video. A simple pixel-level template matching scheme is used. It is assumed that

50

the text is moving with constant velocity. A record is kept of this velocity. Given the

known location of a text region in a frame, its location in the next frame is predicted using

this velocity. A simple least-squared-error search is performed around a neighborhood

of the predicted location to find the precise location. Note that the pattern matching

is performed on both text pixels and background pixels alike. This can be problematic

when text occurs on complex backgrounds, or when text moves over backgrounds of

different gray level intensity. This approach also fails for text exhibiting a non-linear

velocity.

A recent extension to Li and Doermann’s work [27] adds a post-processing step

to correct tracking results in the case that text grows or shrinks very slightly from frame

to frame. The text region is enlarged, and a Canny edge detector is applied to find

character edges. A tight bounding rectangle is found around these characters, and is

used as the final tracking result. The authors found that this extension failed for text

moving over complex backgrounds. To overcome this problem, the least-squared-error

value computed during the neighborhood search is monitored. If a spike in the error

occurs, it is assumed that the text is moving over a complex background, and the post-

processing step is disabled. Once tracking begins, their tracker continues until the end

of the video sequence. They do not consider the problem of determining when a text

event has disappeared, or when a text event ends and another begins. Their algorithm

simply follows some “edgy” region in the video; it does not ensure that it is following

the same text from frame to frame.

51

3.3 Method for tracking rigid text using MPEG motion vectors

As discussed in the previous section, Li and Doermann’s work represents the

state-of-the-art in text tracking. Unfortunately, this approach has several limitations.

First, it assumes that text moves with constant velocity in a linear trajectory. This

assumption could be relaxed by using a more sophisticated trajectory model; however,

even this would fail for random, erratic motion. Another approach would be to remove

the predictive stage altogether and increase the size of the template search window.

Unfortunately this increases the computation cost prohibitively. A least-squared-error

search for an m×n text region over a w×w pixel search window requires m×n×w2 pixel

comparisons. Therefore it becomes very expensive to increase the search window because

the search operation is of order O(w2). A second limitation of their algorithm is that it

compares all pixels within the localized text region, including background pixels. This

can cause the algorithm to track the background instead of the text if the background

changes or if text moves over backgrounds of different intensities.

In this section, I present an algorithm for efficiently tracking rigid text in MPEG

video. I use the motion vectors present in the MPEG-compressed video bit stream

to predict text motion with very little computation cost to the tracker. In effect, the

computation cost has already been paid by the MPEG encoder. This idea was inspired

by papers by Nakajima et al [36], who used motion vectors to detect moving objects in

MPEG video, and by Pilu [40], who used them to detect camera motion.

52

3.3.1 Review of MPEG motion vectors

A brief overview of motion compensation in the MPEG-1 video coding standard

is presented here. The reader is referred to [34] for a detailed treatment of the standard.

The MPEG video standard uses motion compensation to reduce temporal redun-

dancy in the compressed video stream. MPEG defines three types of frames: intra-coded

(I) frames, predictive (P) frames, and bidirectional predictive (B) frames. An I-frame is

self-contained in that it has all the information required to reconstruct the frame. P- and

B-frames are split into non-overlapping 16 × 16 pixel regions called macroblocks. Each

macroblock in a P-frame includes a motion vector indicating an x and y pixel displace-

ment from the last I- or P-frame. It also includes DCT error correction coefficients. To

reconstruct a given P-frame macroblock, the MPEG decoder begins with the 16×16 pixel

area pointed to by the motion vector, and adds the IDCT of the correction coefficients.

A B-frame is similar to a P-frame except that it can include both a motion vector to the

previous I- or P- frame and a motion vector to the next I- or P- frame. Reconstruction

of B-frames is accomplished by averaging the two macroblocks pointed to by the motion

vectors and adding the error correction.

3.3.2 Motion prediction using MPEG motion vectors

At first it may seem trivial to apply MPEG motion vectors to the problem of

tracking text in video. Unfortunately, MPEG motion vectors are usually too noisy for

direct use in a tracker. This is explained by the following observation. Given a region

of one frame, a tracker wishes to find the precise location of that region in the next

frame. On the other hand, the goal of the MPEG encoder is to achieve minimal coding

53

requirements in a minimum amount of time. MPEG encoders are willing to trade off

motion vector accuracy for a decrease in the encoding time.

Figure 3.2 illustrates typical motion vectors found in MPEG video. Three con-

secutive P-frames of an MPEG encoded video are shown in (a). The video contains

upward-scrolling text. Graphical representations of the macroblock boundaries and mo-

tion vectors found in the MPEG bit stream for these three frames are shown in (b). The

white grid indicates the macroblock boundaries. Macroblocks marked with an “X” are

I-coded macroblocks, meaning that they are self-contained and do not require motion

compensation. For macroblocks that are motion-compensated, the motion vectors are

drawn from the macroblock center to the center of the region used for motion compen-

sation in the last frame. Macroblocks drawn with neither an “X” nor a vector have a

motion vector of length zero. It is observed in this figure that many of the macroblocks

corresponding to the text have motion vectors that accurately indicate the text’s mo-

tion. However, some of the motion vectors point in random directions. In particular, I

observed that macroblocks containing few edges tend to have incorrect motion vectors.

Macroblocks containing strong edges tend to be reliable.

My algorithm deals with these issues as follows. Given a localized text region in

one frame, search the next frame for all macroblocks whose motion vectors point back to

any part of the text region. Extract the motion vectors from these macroblocks. Several

constraints are then applied to the motion vectors to determine those that are likely to

be reliable. Very small motion vectors (less than 2 pixels in magnitude) are probably

noisy and are removed from consideration. Motion vectors from relatively featureless

macroblocks are also discarded, because they are not likely to be accurate. This is

54

(a)

(b)

Fig. 3.2. MPEG motion vectors indicate object motion but are noisy. (a): Three consecutive P-frames in an MPEG-1 video.
(b): The same three frames overlaid with graphical representations of the macroblock boundaries and motion vectors.

55

determined by applying a Sobel edge detector on each macroblock, and eliminating

macroblocks that contain less than four edge pixels.

The magnitude and direction of the remaining motion vectors are then clustered.

It is assumed that the largest cluster corresponds to the approximate motion of the text

block. Note that this clustering process implicitly ignores noisy motion vectors. The

vectors in this cluster are then averaged to yield a single motion vector for the text

region.

It is clear that a text event cannot be tracked in an I-frame in this way, because

I-frames do not contain motion vectors. Fortunately, I-frames are relatively rare in an

MPEG stream. Typically I-frames occur only once every ten or twelve frames. Tracking

through an I-frame is handled by averaging the motion vectors determined for the region

in the frame before the I-frame and the frame after.

3.3.3 Refinement using gradient-based correspondence

I have found that the motion vector determined using the simple process above

is generally of very high quality. In fact, for many text events it is possible to track a

moving text region using the MPEG motion vectors alone. However, any small errors

made in the tracking from one frame to the next propagate through the entire lifetime

of the text event. For a long video sequence, the tracking location is usually inaccurate

by several pixels after tracking text through several seconds of video.

I therefore employ a least-squared-error correspondence search around a very

small neighborhood of the location predicted by the MPEG motion vector analysis.

56

Instead of comparing pixel gray levels directly, as in Li & Doermann’s method, I per-

form the correspondence search only on edge pixels (pixels with high gradient). This

encourages the algorithm to match only on the text pixels and not on the background

pixels. Matching on edges implies that the text can move across backgrounds of different

colors without affecting tracking reliability.

MPEG encoders generally use a search window of 32 pixels in each direction

during motion compensation searches [34]. This creates a large computation cost and

accounts for the slow performance of MPEG encoding. The tracker algorithm so far,

however, is able to take advantage of this wide search window “for free.” Unlike Li &

Doermann’s algorithm, this algorithm makes no assumptions about the trajectory of

text, and therefore can handle a greater variety of text motion. Assuming a 32 pixel

search window during MPEG encoding, a text event would have to move at a speed

greater than 32 pixels per frame in order for the tracking algorithm to fail. Text moving

this fast is very unlikely, as it would travel from one edge of a 320 × 240 pixel video to

the other edge in a third of a second.

Unfortunately, successful use of motion vectors is highly dependent on the MPEG

encoder used to encode the video. It is possible, for example, to encode a video using

only I-frames,1 or using a very small search window during motion compensation. To

handle these cases, I also include a simple trajectory-based prediction similar to Li and

Doermann’s algorithm. A record of the current trajectory of the text region is kept. After

performing the motion vector-based tracking approach described above, text motion is

1Note that MPEG videos are rarely encoded in this manner, because bypassing motion com-
pensation significantly increases the MPEG file size.

57

separately predicted using the past trajectory. A least-square-error search is performed

around a neighborhood of the predicted location. The lowest error of this search is

compared to the lowest error found during the motion vector-based search. Of these two

choices, the location with the lowest error is chosen.

3.3.4 Text entering or leaving the video

Text in video sometimes scrolls on or off the screen, such that in some frames only

a portion of the text event is visible. I include special cases in the algorithm for handling

this type of motion. Text exiting the frame is the easier case. The motion determination

steps discussed above are applied only on the portion of the text event that is visible. If

the computed motion indicates that the text event is exiting the frame, the tracked text

box is clipped at the video frame boundary.

Text scrolling into the video is more difficult, because the spatial extent of the

text event is not known. For example, in the operator-assisted indexing application

described above, the human may mark the visible portion of a text event occurring

on the edge of the frame. In subsequent frames, the tracker determines that the text

event is moving towards the center of the frame. We would like the tracker to be able to

automatically resize the tracking box as more text enters the frame. This case is handled

in the following way. The number of edge pixels occurring in the known text region is

counted and used as a texture measure. When the tracker detects that the tracking box

is moving from the edge of the frame towards the center, the number of edge pixels in

the region near the edge is also counted. If the density of edges between the two regions

is comparable, the tracking box is expanded to accommodate the incoming text.

58

3.3.5 Results

In this section, I present the results of running the algorithm on a variety of

video sequences. Except for “poster.mpg”, all video sequences have a spatial resolution

of 320 × 240 pixels and a frame rate of 30 frames per second. They were captured

using the ICE hardware JPEG compression module on an SGI O2 and converted to

MPEG-1 format using SGI’s dmconvert utility. “Poster.mpg” was captured at 15 frames

per second directly to MPEG-1 format using a hand-held camera connected to a Sun

ULTRA-1 workstation equipped with a SunVideo hardware MPEG compression card.

Text regions were marked by hand in the first frame of each sequence, and the algorithm

automatically tracked the regions for the remainder of the sequence.

Figure 3.3 shows tracking results on typical moving caption text events in a com-

mercial video sequence. Note that the tracking continued successfully through the sudden

change in background. Figure 3.4 shows the algorithm tracking caption text scrolling

horizontally. Text is entering and exiting the frame. The algorithm does a good job of

determining the bounding boxes on incoming text using the texture similarity method

described in Section 3.3.4, although the left boundary of the “HOWLIN’ WOLF” text

event is somewhat loose. Figure 3.5 illustrates tracker performance on vertically-scrolling

text in an Arabic script. Note that tracking text in this script is challenging because the

text has fewer edges than text in Latin script.

Although the tracking algorithm was designed for caption text, I have found that

it works for quasi-rigid scene text events as well. Figure 3.6 demonstrates this. The

algorithm tracks successfully despite the changing text size due to camera motion. The

59

algorithm’s robustness to erratic, fast motion is demonstrated in Figure 3.7. A tracker

assuming a simple linear trajectory model would fail in this case.

3.4 Shape-based method for tracking unconstrained caption text

The work presented in the last section focused on tracking rigid text. However,

caption text events can change over time. Text can grow, shrink, or rotate. In this

section, I describe a method for tracking text that changes in these ways over time.

Instead of a stand-alone tracking algorithm, I propose tightly coupling the de-

tection and tracking modules. The detection and localization algorithm identifies text

instances in each frame. It is the responsibility of the tracker to determine which text

instances (if any) in adjacent frames correspond to the same text event.

Two text instances belong to the same text event if the content of the text is the

same, regardless of changes in size, location, etc. Therefore it follows that although some

characteristics of a text event may change over time, the basic shape of the characters

remains constant. This property can be exploited to determine whether two text boxes

correspond to the same text event.

I propose analyzing two consecutive frames at a time. First, the text box localiza-

tion algorithm described in Section 2.4 is applied to each frame. Oriented text instances

are made horizontal by applying a simple rotation transformation. A text binarization

algorithm is next applied on each text instance. My implementation uses the binariza-

tion algorithm presented in Chapter 4, although another binarization algorithm could

be substituted.

60

frame 21 frame 57 frame 93

frame 129 frame 165

Fig. 3.3. Tracking algorithm applied to “losethegray.mpg” video sequence with a changing background.

61

frame 1756 frame 1771 frame 1786 frame 1801

frame 1816 frame 1831 frame 1846 frame 1861

frame 1876 frame 1891 frame 1906 frame 1921

Fig. 3.4. Tracking algorithm applied to “scrolling7.mpg” video sequence with horizontally-scrolling text entering and exiting the
frame.

62

frame 16 frame 25 frame 34

frame 43 frame 52

Fig. 3.5. Tracking algorithm applied to “t4.mpg” video sequence with vertically-scrolling caption text.

63

frame 1156 frame 1162 frame 1165 frame 1168

frame 1171 frame 1192 frame 1195 frame 1198

frame 1201 frame 1204 frame 1207 frame 1210

Fig. 3.6. Tracking algorithm applied to scene text in “foxsports.mpg” video sequence.

64

frame 637 frame 652 frame 667 frame 682

frame 697 frame 712 frame 727 frame 742

frame 757 frame 772 frame 787 frame 802

Fig. 3.7. Tracking algorithm applied to scene text with erratic motion in “poster.mpg” video sequence.

65

Connected component analysis is performed on the binarized text to locate indi-

vidual characters. The contour of each connected component is traversed and stored as

a chain code [12]. Each chain code is then parameterized as two 1-D functions θ(t) and

r(t), using the usual definitions

θ(t) = tan

(
y(t)− y0
x(t)− x0

)

r(t) =

√
(x(t)− x0)2 + (y(t)− y0)2

where (x(t), y(t)) is a point on the contour, and (x0, y0) is some reference point for

the connected component. To smooth out noise introduced by imprecise binarization, a

low-pass filter is then applied to both functions by convolving with a Gaussian:

θs(t) = θ(t) ∗G(t)

rs(t) = r(t) ∗G(t)

I found empirically that σ = 0.1 for the Gaussian function worked well.

The resulting smoothed functions θs(t) and rs(t) represent a signature of the

shape of a given character. From this shape, feature points are extracted. I use the

points of maximum curvature (critical points) as the features. Zhu & Chirlian’s critical

point detection algorithm [58] was used in my implementation. The result is a set of

points P for each localized text box, indicating the coordinates of each feature point

with respect to the upper-left corner of the text box. The coordinates of P are then

normalized by text rectangle height and width to give values between 0 and 1.

66

To decide whether two text boxes A and B in two adjacent frames belong to the

same text event, the normalized feature point sets PA and PB are examined. For each

point pi in PA, the point qj in PB having the smallest Euclidean distance from pi is

identified. The sum of the distances over all i is calculated. Then the process is repeated

in the reverse direction. More formally:

D(A,B) =
∑

i

min
j

(
dist

(
pi, qj

))
+
∑

j

min
i

(
dist

(
pi, qj

))

where dist (r, s) is the Euclidean distance between points r and s.

The resulting value D(A,B) for two text boxes A and B is a measure of the

difference between the shapes of the two text instances. A low value indicates that

A and B likely contain the same text, and hence belong to the same text event. A

high D(A,B) value indicates that they probably contain different text. Therefore, the

two text boxes are declared to belong to the same text event if D(A,B) is below some

threshold TD.

Figures 3.8 and 3.9 illustrate the process of determining critical point features and

comparing them between frames. In Figure 3.8, the images in (a) show two consecutive

frames from a video sequence with growing text. The proposed algorithm is applied to

these frames to determine whether they contain the same text event. The frames are

binarized, as shown in (b). Note that due to imperfect binarization, there are a few

small connected components that do not correspond to characters. In (c), the contour

of each character has been found, and critical points have been identified. The diagram

in D shows the normalized feature points of both the first frame (small, green squares)

67

overlaid on those of the second frame (larger, blue squares). Vectors are drawn between

each feature point in each frame and its nearest neighbor in the other frame. It is observed

that the lines between feature points are, in general, relatively short, causing a low value

for the shape difference D(A,B). This is expected because the text regions in this case

correspond to the same text event. Most of the longer vectors in the diagram are caused

by the non-character connected components introduced by the imperfect binarization

algorithm.

Figure 3.9 is similar, but shows two adjacent frames that have text boxes that do

not correspond to the same text event. The binarization and feature point extraction

steps are presented in images (b) and (c), respectively. The normalized feature points

for both frames are presented in image (d). We observe qualitatively that the vectors are

longer and appear more random than those in Figure 3.8(d). This causes the D(A,B)

shape difference metric to be high, indicating that the two text boxes are from different

text events.

3.4.1 Results

Experimentation was performed to investigate the proposed method’s accuracy.

A dataset of 27 video sequences, each containing one caption text event, was captured

from television commercials. The data was captured in the same manner described in

Section 2.5.1. There were a total of 1005 frames in the dataset. A variety of growing,

shrinking, moving, and rotating text events were included. The text in each frame

was localized manually by me, again using the ViPER ground-truth tool [7]. The 27

individual video sequences were combined into a single video sequence by appending

68

(a)

(b)

(c)

(d)

Fig. 3.8. Text feature point extraction and comparison for two consecutive video frames
containing the same text event.

69

(a)

(b)

(c)

(d)

Fig. 3.9. Text feature point extraction and comparison for two consecutive video frames
containing different text events.

70

together randomly-selected groups of adjacent frames of random lengths from the video

sequences. The result was a single 1005 frame video sequence with 111 text events.

The evaluation was carried out as follows. The algorithm was run on the 1005-

frame video sequence. For each pair of consecutive frames, the algorithm decided whether

the text in the two frames belonged to the same text event or not. If the algorithm

correctly determined that the text belonged to the same text event, a correct detect was

recorded. If the algorithm incorrectly concluded that the two frames shared a text event,

a missed detect was tallied. If the algorithm incorrectly concluded that the two frames

had different text events, a false alarm was recorded. Precision and recall statistics were

then computed using the definitions presented in Section 2.5.2.

Figure 3.10 presents the results of the experimentation as an ROC curve. Each

point on the curve shows the precision and recall achieved for one value of threshold TD.

It is observed from the ROC curve that very good precision and recall can be achieved.

The optimal threshold value depends on the needs of the application. For example, for an

application in which precision and recall are equally important, a threshold of TD = 0.55

is optimal, at which precision and recall are both 97.5%. In a video indexing application,

however, it is likely that a high recall would be more important than a high precision.

This is because it is very important that all text events are entered at least once into the

index. While it is preferable that each event is entered exactly once, duplicate entries

are not harmful. It is observed from the ROC curve that it is possible to obtain a recall

of 100% with a precision of 96% at TD = 400.

Figure 3.11 shows sample qualitative results of the combined text detection, local-

ization, and tracking steps. Images (a) through (h) show eight consecutive frames from

71

a commercial featuring rotating, shrinking, and growing text, and the boxes localized by

our algorithm. The tracking algorithm concluded that the text boxes in images (a), (b),

(c) and (d) correspond to the same text event. Similarly the algorithm determined that

images (f) through (h) belong to a separate text event. Image (e) confused the algorithm

somewhat due to the overlapping text. The tracking algorithm concluded that image (e)

belonged to its own, one-frame text event.

Figure 3.12 demonstrates the algorithm’s effectiveness on text occurring against

complex, unconstrained backgrounds. The tracking algorithm correctly identified the

text in image (a) as one text event, and the text occurring in images (b) through (f) as

another text event.

72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Precision

Fig. 3.10. ROC curve of tracker performance.

73

frame 1 frame 4 frame 6 frame 7

frame 10 frame 12 frame 17 frame 24

Fig. 3.11. Sample results of combined text detection and tracking on growing, shrinking, and rotating text.

74

(a) (b) (c)

(d) (e) (f)

Fig. 3.12. Sample results of combined text detection and tracking on growing text
against an unconstrained background.

75

Chapter 4

Binarization of caption text

4.1 Introduction

Binarization is the process of separating character strokes from the background.

That is, given a localized region of the color video frame known to contain text, binariza-

tion produces a binary image of the text. The detection problem studied in Chapter 2

concerns classifying video frame regions as text or background; the binarization problem

concerns classifying individual pixels as text or background.

Binarization is necessary to bridge the gap between localization and recognition.

The eventual goal of a text extraction system is to recognize the text appearing in

video. Optical character recognition (OCR) in the context of document images has been

extensively studied [35]. If possible, we would like to apply these extensively-studied,

highly-refined OCR algorithms to the text-in-video extraction problem. However, most

recognition algorithms expect images resembling documents, with text strokes in black

ink against a white background. In contrast, text occurring in video can be of any color

and can appear against complex backgrounds. It is the responsibility of a binarization

algorithm to convert the complicated text regions occurring in video frames to the simple

binary images required by OCR.

76

4.2 Challenges of binarization of video frames

Binarization of text has been studied in the document image analysis domain. In

most applications, images of documents are obtained by a grayscale optical scanner. The

original document usually has text in black ink appearing against a white background.

Noise introduced during the scanning process may cause the grayscale image to have more

than two gray levels. However, the histogram of the grayscale image is still strongly

bimodal, with one peak corresponding to text pixels and the other corresponding to

background pixels. Thresholding (either locally or globally) can be performed at a well-

chosen gray level in the valley of the two peaks to give accurate binarization results.

Many techniques have been studied for finding the ideal threshold (e.g. [21, 55, 44]).

Figure 4.1 illustrates this binarization process for a document image. The his-

togram for the fragment of a document image in (a) is shown in (b). The strong peak at

about 225 corresponds to background pixels, while the weaker peaks around 75 and 125

corresponds to text pixels. A threshold at 160 gives good binarization results, as shown

in image (c).

It may seem that a similar technique can be applied to the binarization of caption

text. Like text in documents, caption text in video is usually designed to be easily

readable by human viewers. Contrast with the background appears high. Text stroke

color usually appears relatively uniform. It seems logical that simple thresholding could

be applicable to video frames.

Unfortunately, I have found that it usually is not. Upon closer examination, it is

found that text stroke color actually varies widely, even when it appears uniform to the

77

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000

(a) (b) (c)

Fig. 4.1. Histogram-based thresholding of a document image. (a): A portion of a
document image, (b): Its histogram, (c): Results of thresholding at gray level 160.

human eye. Because the background in a video frame is unconstrained, the same colors

making up a text stroke may also occur in background objects. Figure 4.2 illustrates

these problems with the sample video frame shown in (a). A localized text region is

shown in (b), and its histogram is presented in (c). The histogram is bimodal with a

valley at about gray level 75. But thresholding at this gray level gives the poor results

in (d). This is because the peaks of the histogram are due to variation in background

color instead of the separation between text and non-text pixels. The binarization was

repeated at a higher threshold (gray level 130), but this also led to the disappointing

results in (e). Even the result of double thresholding, shown in (f), failed to give good

results. In fact, any histogram-based thresholding scheme will fail in this case, because

many pixels in the text strokes share the same color as pixels in the background.

The challenges of text binarization in video are summarized as follows:

• Low resolution: Video frames are typically captured at resolutions of 320×240 or

640×480 pixels. In contrast, document images are typically digitized at resolutions

78

(a) (b)

0 50 100 150 200 250
0

20

40

60

80

100

120

(d)

(e)

(c) (f)

Fig. 4.2. Histogram-based thresholding gives poor results on unconstrained video
frames. (a): original video frame; (b): localized text region; (c): histogram of text
region; (d), (e): results of thresholding on gray levels 75 and 130, respectively; (f):
result of double thresholding at gray levels 100 and 175.

79

of 300 dots per inch or greater. For example, a lowercase letter “e” in the document

image in Figure 4.1(a) is about 21 pixels wide and 26 pixels tall. A lowercase letter

“e” in the localized video text box in Figure 4.2(b) is just 9 pixels wide and 8 pixels

tall.

• Unknown text color: Text can have arbitrary color.

• Unconstrained background: The background can have colors similar to the text

color. The background may include streaks that appear very similar to character

strokes.

• Color bleeding: Lossy video compression may cause colors to run together. This

blurs the edges between text strokes and background pixels.

• Low contrast: Low bit-rate video compression can cause loss of contrast between

character strokes and the background.

4.3 Review of prior binarization work

This section summarizes some of the past approaches to binarization of text in

images and video frames. I have classified these algorithms into four main approaches

to binarization: global thresholding, local thresholding, color clustering, and neural net-

works. The algorithms belonging to each approach are now discussed.

4.3.1 Global thresholding

Global thresholding is a common approach. Algorithms in this category determine

some grayscale threshold, and apply it to all pixels in a localized text region. The

80

methods differ in the strategy for choosing the threshold, and in the preprocessing and

post-processing steps.

• Wu et al [57] binarize text found in web page images by smoothing the grayscale

image and then thresholding at the valleys on either end of the grayscale histogram.

This allows for both light text and dark text to be binarized. The algorithm does

not determine whether the text is lighter or darker but instead generates two

outputs, one for each case.

• LeBourgeois [22] assumes that the dominant portion of the image histogram is the

background. The global threshold is found by an entropy-maximizing scheme [55].

A post-processing stage splits characters inadvertently connected by the thresh-

olding. Characters are assumed to be of a fixed font size.

• Sato et al [45] apply filters designed to detect vertical, horizontal, and diagonal line

elements to localized text regions in videos of newscasts. The union of the outputs

of all filters is taken. Final binarization is performed by thresholding at a fixed,

pre-set threshold. It is assumed that text is white.

• Messelodi and Modena [33] present a system for extracting text from book covers

with plain backgrounds. They use a simple global thresholding scheme at the tails

of each side of the histogram. Their method considers binarization of oriented text.

• Agnihotri and Dimitrova [1] binarize caption text appearing in video. They process

only the red plane of an image, under the assumption that text of interest is white,

yellow, or black. Thresholding is performed at the average pixel value of the

81

localized text region. The average of the pixels on the border of the text region is

also computed and assumed to approximate the background color.

Global thresholding has been found to be useful in some applications. However,

as discussed in Section 4.2, global thresholding is not able to perform well on caption

text occurring in general-purpose, unconstrained video.

4.3.2 Local thresholding

Local thresholding passes a small window over a localized text region. A threshold

is computed based on the pixels underneath the window. The pixel at the center of the

window is then binarized based on this threshold.

• Ohya et al [38] use a combined detection/binarization stage to extract characters

from scene images. Text is assumed to be either black or white. Regions of the

image with bimodal histograms are assumed to be text regions. Local thresholding

is performed on these regions using the threshold selection algorithm described

in [39]. Shape and size heuristics are applied to filter out non-text strokes.

• Lee and Kankanhalli [23] also use a combined detection/binarization stage. After

quantizing the gray levels in the image, detection is performed by searching for

strokes with uniform gray level. Each potential character is thresholded using the

gray level of its boundary. Post-processing removes components with suspicious

aspect ratios, contrast, and fill ratios.

• Winger et al [54] use a modified form of Niblack’s Multiple and Variable Thresh-

olding scheme [37], which employs variable thresholds based on mean local pixel

82

intensity. After calculating the variance, the modified scheme uses a different mul-

tiplier and exponent. Our implementation of the method (by Ryan Keener) did

not produce good results. Subsequent correspondence with the author suggested

that good results are possible only when algorithm parameters are manually tuned

to appropriate values for a given image.

• Shim [48, 49] thresholds each character stroke component box individually by ana-

lyzing the grayscale histogram. The threshold is selected using the iterative method

described in [44].

4.3.3 Color clustering

Most of the work discussed so far operates only on the luminance plane of images

and video frames. The algorithms in this section incorporate color information. It is

assumed that the strokes in a text instance had uniform color, although in the compressed

video stream color bleeding and quantization may have introduced noise. Color clustering

can then be applied to group together pixels of nearly the same color.

• Garcia et al [9] quantizes and clusters color pixels in localized text regions in the

HSV color space. It is assumed that after clustering, all text pixels will correspond

to a single cluster. That cluster is identified by choosing the cluster with the most

periodic vertical profile.

• Wong et al [56] continue to perform color clustering on localized text regions until

two clusters are obtained. The two clusters are assumed to correspond with text

83

pixels and background pixels. My experimentation with color clustering has indi-

cated that this assumption rarely holds due to complex backgrounds that contain

colors similar to the text color.

• Mariano et al [31] performs text region detection and binarization in one step.

Color clustering in the L*a*b* color space [42] is performed on individual scan

lines of a video frame. The patterns of clusters occurring in neighboring scan lines

are analyzed to find regularly-spaced streaks corresponding to text strokes. It is

assumed that text is precisely horizontal.

Color clustering seems to be a promising approach. Unfortunately, the compu-

tation demands of color clustering seem to be prohibitive on today’s systems. An im-

plementation of Mariano’s algorithm obtained from the author and optimized for speed

by me required about 50 minutes to process a 1-second video clip on an SGI Octane

workstation.

4.3.4 Neural Networks

Some work has applied neural networks to the problem of video text binarization.

For example, Shin et al. [50] perform detection and binarization in one step by applying

a support vector machine (SVM) to classify each pixel as text or non-text. The features

used as input to the SVM are the grayscale pixel values in a local neighborhood. A

hierarchical strategy is employed to handle text of various sizes.

84

4.3.5 No binarization

A final approach is to skip the binarization step altogether. There has been

recent interest in OCR algorithms that operate directly on grayscale images without

binarization [35]. Proponents of this system say that information is inherently lost in the

binarization process. Lienhart [28, 30] describes a custom OCR package for recognizing

text in video frames without binarization. Unfortunately it does not work well when text

appears against complex backgrounds. The accuracy of their grayscale OCR package was

unable to compete against the accuracy typical of commercial OCR packages. As the

state-of-the-art in grayscale image recognition improves, circumventing the binarization

stage may be a viable option.

4.3.6 Remarks on the state-of-the-art

From this survey of recent approaches to the binarization of text in video, I observe

the following. Most existing binarization approaches make assumptions that are valid for

document images but not for text appearing in general-purpose video. Many approaches

use simple histogram thresholding methods which assume that the background is simple.

They create noisy binarizations when applied to text occurring on complex backgrounds.

Some algorithms work only for text of a certain color, etc. which severely limits their

usefulness for general-purpose video.

In contrast, I observe that most of these text binarization algorithms do not take

advantage of reasonable assumptions about text in video that can improve performance.

It can be assumed that text in video usually persists for more than one frame. Multiple

frames can be integrated to give better binarization results. Characters in a text instance

85

usually have uniform stroke width and color. Characters are evenly-spaced, aligned, and

have roughly uniform size. Reasonable upper and lower bounds exist on the size of text

characters possible in a video frame.

In the following section, a binarization algorithm is presented that takes advantage

of these additional assumptions. Unlike previous work, it is designed to work well with

text appearing against complex backgrounds, and does not make a priori assumptions

about text color.

4.4 An algorithm for text binarization in video frames

An algorithm is now presented for binarization of text in video. Each step is

explained in detail in the following sections. Figure 4.3 illustrates each of the steps on a

sample video frame.

4.4.1 Temporal integration

There are several motivations for analyzing more than one frame during the bina-

rization process. Lossy video compression methods introduce noise, but the noise varies

from frame to frame. Simple temporal averaging can reduce such noise. Temporal in-

tegration is also helpful for background removal. Caption text often remains stationary

while the background behind it changes or moves. Or the text may move, causing the

background behind the text to change. In either case, temporal averaging can be used

to smooth out the background.

I have developed a text tracking module (discussed in Chapter 3) to determine

the pixel-accurate location of a text event in each frame. During temporal integration,

86

(a)Video frame with localized text regions

(b) Temporal, resolution, and contrast enhancement is applied on each text box. The
inverse of each text box is obtained. (§4.4.2)

(c) Logical level thresholding is applied to both polarities of each text box. (§4.4.3)

Fig. 4.3. Steps of the binarization algorithm (continued on next page).

87

(d) Connected components are found. Heuristics are applied to remove
non-character-like components. (§4.4.4)

(e) Alignment and size of components are used to choose the polarity for each text
region. (§4.4.5)

(f) Final segmentation result.

Figure 4.3 (continued)

88

the region location in each frame identified by the tracker are averaged. Note that this

assumes that the text remains rigid as it moves. If it does not remain rigid, the temporal

averaging procedure will blur the text strokes in addition to the background. To prevent

this, the confidence of the text tracker is monitored. If the confidence falls below a

threshold, it is likely that the text is changing over time, and temporal averaging is

disabled for processing the text instance.

Figure 4.4 shows an example of temporal averaging applied to a localized text

region. Image (a) shows a sample frame from a sequence of 60 frames having a stationary

text event appearing on a moving background. Images (b) and (c) show the localized

text region from two frames in the sequence. Note that the complex background is

quite prominent in both images. Image (d) shows the result after performing temporal

averaging on the text region over its 60-frame lifetime. The background complexity has

been reduced, and the contrast of the text against the background has been substantially

improved.

4.4.2 Resolution and contrast enhancement

A simple linear interpolation step is used to double the resolution of the image.

Although this resolution enhancement step cannot truly recreate lot resolution, I have

found that even simple linear interpolation improves the binarization results. More

sophisticated resolution enhancement schemes could be investigated. For example, there

has been some work in using motion information in video to improve resolution [52].

This approach could be applied to resolution enhancement of moving text.

89

(b)

(c)

(a) (d)

Fig. 4.4. Temporal averaging reduces background noise and improves contrast. (a):
sample frame from a video sequence; (b) and (c): localized text region in two frames of
the sequence; (d): result of temporal averaging.

The contrast between the text and the background in a localized text region may

be quite low. To improve the contrast, simple grayscale histogram stretching [12] is

performed.

4.4.3 Logical level thresholding

Some document analysis work has considered the problem of binarizing text oc-

curring in noisy document images. This problem shares similarities with our problem of

extracting text occurring against complex backgrounds. Kamel and Zhao [20] evaluate

seven binarization techniques on noisy bank check images. Their novel method, logical

level thresholding, was shown to perform the best.

Logical level thresholding works as follows. A maximum stroke width W is as-

sumed. Then for every pixel p in the grayscale image, the eight pixels Pi at radius W

and angles iπ
4 with i = 0, 1, ..., 7 from p are considered. The local average avgi of the

90

(2W +1)×(2W +1) neighborhood around each Pi is computed. Pixel p is declared to be

text if for some j = 0, 1, 2, 3, all of avgj , avg(j+1)mod8, avg(j+4)mod8, and avg(j+5)mod8

are greater than p by some threshold T .

The algorithm’s strength over other binarization techniques is that it enforces re-

strictions on uniformity of stroke grayscale level, uniformity of stroke width, and bounds

on stroke width. This leads to less noise in the binarized output.

I applied the algorithm to binarization of localized text regions in video frames.

After the temporal averaging, resolution enhancement, and contrast stretching steps

described above, the image region is converted to the L*a*b* color space [42]. This color

space mimics the human visual system’s perception of luminance and color, so that text

that appears to be high-contrast by a human has numerically high contrast in L*a*b*

space. Logical level thresholding is then applied on the luminance plane. Logical level

thresholding requires two parameters, the maximum stroke width W and the contrast

threshold T . However I observed that the algorithm’s performance is relatively insensitive

to the choice of parameters. In my implementation, I use T = 5, which is a good

compromise between allowing binarization of low-contrast text and preventing noise.

My choice of stroke width W is proportional to the size of the input video frame. For a

frame resolution of 320 × 240, W = 10 works well. This does not limit the algorithm’s

practical ability to binarize text of different sizes, because a stroke width of 10 pixels

corresponds to text that nearly fills the video frame.

Logical level thresholding requires that the text stroke color is darker than the

background. In our application this is not an acceptable assumption because we wish to

extract text of any color. I tried to modify the logical level algorithm to allow strokes

91

darker and lighter than the background by modifying the thresholding step. Unfortu-

nately, this relaxes the restriction of stroke color consistency and creates noise. Instead,

I assume that all text strokes within a localized text region are either lighter than or

darker than the background. Logical level thresholding is then applied to both the orig-

inal region and its inverse to produce two independent binarized outputs. The choice of

correct polarity is delayed until step 4.4.5.

4.4.4 Character candidate filtering

Connected component analysis is performed on both output images of logical level

thresholding. These connected components are either characters or noise. Heuristics are

applied to preserve characters while removing noise. These heuristics are:

• Minimum character size: Components having height less than 5 pixels or area

less than 12 pixels are removed. Connected components this small are unlikely to

be characters. Even if they are characters, it would probably not be possible for

the OCR module to recognize them. Note that a minimum character width is not

enforced because lowercase “l” characters are often only one pixel wide.

• Aspect ratio bounds: A component whose aspect ratio width
height is very large or

very small is discarded. These components are often horizontal or vertical lines, or

other noise. We currently use the range [0.1, 1.0] as acceptable aspect ratios.

4.4.5 Choice of binarization polarity

As noted earlier, the logical level thresholding was applied on both the original

localized text region and its inverse. In one of the polarities, the text is lighter than the

92

background; in the other, it is darker. Logical level thresholding applied to the dark-text

image will result in a binarization of the text. When applied to the light-text image, the

algorithm will attempt to binarize the background. The correct binarization will have

connected components with spacing, size, and alignment consistent with text characters.

The incorrect binarization has irregular components due to its attempt to binarize the

background.

My algorithm chooses the correct binarization by analyzing several statistics about

the connected components in each binarization polarity. A voting strategy is used. For

each statistic, a vote is cast for the binarization that demonstrates the more text-like

quality. The binarization with the most votes is chosen as the final binarization output.

The criteria used in my implementation are:

• Height similarity: Low standard deviation of connected component heights

• Width similarity: Low standard deviation of connected component widths

• Spacing consistency: Low standard deviation of horizontal distance between

adjacent component centers

• Horizontal alignment: High number of pairs of components whose bottoms

share roughly the same vertical scan line

• Character-like aspect ratio: Low difference between average component aspect

ratio and 1.0

• Clean spacing: Low number of pixels that occur within the bounding box of

more than one connected component

93

• Periodicity of vertical projection: The even spacing of text characters should

cause the vertical projection to be roughly periodic. The more periodic of the two

polarities is chosen using the method presented in [9]

Note that the number of votes for the winner is a confidence measure. In most

cases, I have observed that the voting results in a clear majority, indicating a high

confidence that the correct binarization was chosen. A close vote indicates a lower

confidence. In these cases, it may be appropriate to pass both binarizations to the OCR

module, and choose the one with the higher recognition confidence. A close vote may

also indicate that the localized region does not actually contain text.

4.5 Results

Figure 4.5 presents results of the binarization algorithm on localized text boxes in

sample video frames. For comparative purposes, the outputs from my implementation

of the binarization method proposed by Agnihotri et al [1] are also presented. This algo-

rithm was selected for comparison because it is the most recent complete text extraction

system found in the literature designed for general-purpose video.

Column (a) in Figure 4.5 shows the localized text regions used as input to the

binarization algorithms. Column (b) presents the output of Agnihotri’s binarization

method. Column (c) presents the output of my method. It is observed that the bi-

narizations produced by my algorithm are significantly cleaner than those produced by

Agnihotri. This is especially apparent in the middle row of images in the figure. This is

an example of how Agnihotri’s method suffers from the inherent problems with global

94

thresholding discussed in Section 4.2. Also, the algorithm’s assumption that the back-

ground color can be determined by averaging the pixels on the border of the localized

text region is violated in this case. The background color varies from very dark in the

lower-left corner of the text region, to bright in the upper-right corner.

Figure 4.6 shows some examples of the binarization algorithms applied on very

challenging video frames. These examples highlight some of the problems with my bi-

narization algorithm. The first row of images shows the output of the binarization

algorithms on Arabic caption text. The output of my algorithm, shown in column (c),

has given reasonable binarizations for three of the text boxes, but it has failed to binarize

the top text box accurately. The problem is that the algorithm has selected the incorrect

binarization polarity for this text box. This can be explained by reviewing the polarity

selection criteria described in Section 4.4.5. Many of the criteria assume that connected

components in the binarization correspond to text characters. This assumption is not

compatible with the Arabic script in this example, in which characters are connected

together. I conclude that my polarity selection criteria will give accurate results only

for scripts with separated characters. Alternative selection criteria could be devised to

handle other scripts. Agnihotri’s algorithm does not suffer from this restriction, and has

chosen the correct polarities. However, their binarization is still quite noisy.

The second row of images in Figure 4.6 shows the algorithms applied to very small

text. The average character size of this text is about 8 pixels high by 5 pixels wide, with

a sub-pixel stroke width. Agnihotri’s algorithm generates illegible binarization in this

case. My binarization algorithm’s results are reasonable, but are still probably not clean

enough to be accurately recognized by a standard OCR module. Binarizing text of such

95

(a) (b) (c)

Fig. 4.5. Binarization results for sample video frames. (a): localized text regions; (b): output of binarization algorithm by
Agnihotri et al [1]; (c): output of my binarization algorithm.

96

a small size is extremely challenging, and further research will be necessary to develop

algorithms that can do it accurately.

The third row of images in Figure 4.6 presents the results of binarization on text

with very low contrast with the background. Agnihotri’s algorithm incorrectly chooses

the polarity of the text, and attempts to binarization the shadows behind the characters.

The incorrect selection of polarity is due to their assumption that the background color

can be determined by averaging the pixels along the text region border. The contrast

between background and foreground is so low that this assumption fails in this case.

My algorithm produces better results, but there is still much noise that would probably

cause recognition to fail. Binarization of low-contrast text is another area that requires

further research.

97

(a) (b) (c)

Fig. 4.6. Binarization results for very challenging video frames. (a): localized text regions; (b): output of binarization algorithm
by Agnihotri et al [1]; (c): output of my binarization algorithm.

98

Chapter 5

Summary and Conclusions

This thesis has discussed the extraction of text events from general-purpose video.

Text appearing in video is one feature that gives insight into a video’s content. Auto-

matic extraction of text would therefore be useful in video indexing applications. I have

discussed the several sub-problems of text extraction, including detection, localization,

tracking, and binarization. These are significantly harder than the corresponding prob-

lems in document analysis.

The detection and localization problems involve finding tight bounding boxes

around any text in a given frame. I have presented two detection and localization

algorithms. Algorithm A detects and localizes horizontal text of constrained size and

horizontal orientation. Algorithm B detects non-horizontal text and text of arbitrary

size. Both run directly on MPEG-compressed video bit streams. These algorithms

have been evaluated on challenging datasets against other algorithms presented in the

literature. It was found that Algorithm B gave better results than other algorithms.

The tracking problem involves locating text regions as they move or change over

time. I have presented two tracking algorithms. The first works on rigid text exhibiting

simple, linear motion. It uses MPEG motion vectors for speed and robustness. I have

also presented a tracking algorithm that handles text events that grow, shrink, and rotate

over time. This algorithm was experimentally evaluated on a challenging dataset.

99

The binarization problem involves converting a color image of a text string into

a binary image suitable for OCR. This is difficult because the background may be quite

complex and have colors similar to the text color. I have proposed a binarization algo-

rithm that works with arbitrary text color and background complexity.

5.1 Opportunities for future work

As with any research, many dead ends and blind alleys were encountered during

the work described in this thesis. I believe that many of these unsuccessful ideas were

good in theory, but I was unable to solve the necessary details needed to implement

them. In this section, I describe some of the avenues of the text extraction problems

that remain unexplored.

My evaluation of state-of-the-art detection and localization algorithms showed

that no algorithm could achieve greater than 50% recall and precision simultaneously

on a challenging dataset of general-purpose video. For application in a video indexing

system, algorithms with better accuracy are needed. Current algorithms are confused by

image regions having texture similar to text. Research is needed to explore other features

that can robustly distinguish between text and non-text regions. One possibility is to

combine the outputs of multiple detection and localization algorithms in an intelligent

way to produce a single, better output. Another possibility is to use an OCR module to

assist in text localization. The confidence of an OCR module could be used to discard

image regions that cannot be recognized.

I explored the idea of analyzing the shapes within a candidate text region to verify

that it contains text. For example, the frequency of corners and edges of the shapes in

100

a region could be used to remove very simple shapes unlikely to be text characters.

Unfortunately, some characters in some scripts have very simple shapes. I abandoned

this idea because I was unwilling to impose constraints on the script of the text to be

detected. However I believe the idea of analyzing shapes within a candidate text region

deserves further investigation.

The binarization algorithm presented in this thesis works well with large font

sizes. However, there is a significant amount of text in video that has very small size,

sometimes with stroke widths less than one pixel. Connected component labeling on such

small fonts often gives inaccurate results, causing my binarization algorithms to fail. I

explored the use of topographical analysis [24] to binarize small text. Unfortunately, I

found that such an approach was very susceptible to noise. More research is needed into

the accurate binarization of small text.

I have also tried to incorporate color features into the binarization algorithm to

improve the results. It is desirable to consider color during binarization because text may

have little contrast with the background in the luminance image plane, but have high

contrast in a color plane. I tried using color clustering [16] to separate text strokes from

the background. This approach worked well once the parameters of the color clustering

algorithm were manually adjusted for a given text instance. Unfortunately, I was unable

to find a mechanism for automatically setting these parameters. More research is needed

to find a way to incorporate color information into the binarization process.

In addition to growing, shrinking, and rotating text, other types of “stylized” text

can be found in general-purpose video. For example, text can break into pieces, or morph

between fonts, or undergo perspective distortion. The tracking algorithm presented in

101

this thesis works for some of these cases, but further research is required to extend the

algorithm to handle more types of stylized text.

The recognition problem has not been covered in this thesis. Several researchers [57,

53, 13] have attempted recognition from images and video. Unfortunately, even with con-

straints on the video dataset and application-specific text dictionaries available a priori,

recognition accuracy has been low. More research is needed to design OCR modules

geared specifically for the unique challenges of text in video.

102

References

[1] L. Agnihotri and N. Dimitrova. Text Detection for Video Analysis. In Proceedings of

the IEEE Workshop on Content-Based Access of Image and Video Libraries, pages

109–113, 1999.

[2] AltaVista Company, Inc. Altavista. http://www.altavista.com/.

[3] S. Antani, D. Crandall, and R. Kasturi. Robust extraction of text in video. In Proc.

International Conference on Pattern Recognition, volume 3, pages 831–834, 2000.

[4] S. Antani, D. Crandall, V. Y. Mariano, A. Narasimhamurthy, and R. Kasturi. Re-

liable extraction of text in video. Technical Report CSE-00-022, Department of

Computer Science and Engineering, The Pennsylvania State University, University

Park, PA 16801, November 2000.

[5] S. Antani, D. Crandall, A. Narasimamurthy, Y. Mariano, and R. Kasturi. Evaluation

of Methods for Extraction of Text from Video. In IAPR International Workshop

on Document Analysis Systems, pages 507–514, 2000.

[6] N. Chaddha, R. Sharma, A. Agrawal, and A. Gupta. Text Segmentation in Mixed–

Mode Images. In 28th Asilomar Conference on Signals, Systems and Computers,

pages 1356–1361, October 1995.

103

[7] D. Doermann and D. Mihalcik. Tools and techniques for video performance eval-

uation. In Proc. International Conference on Pattern Recognition, pages 167–170,

2000.

[8] R. Dugad and N. Ahuja. A Fast Scheme for Altering Resolution in the Compressed

Domain. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages

213–218, 1999.

[9] C. Garcia and X. Apostolidis. Text detection and segmentation in complex color

images. In Proc. IEEE International Conference on Acoustics, Speech, and Signal

Processing, pages 2326–2329, 2000.

[10] U. Gargi, S. Antani, and R. Kasturi. Indexing text events in digital video databases.

In Proc. International Conference on Pattern Recognition, volume 1, pages 916–918,

1998.

[11] U. Gargi, D. Crandall, S. Antani, T. Gandhi, R. Keener, and R. Kasturi. A system

for automatic text detection in video. In International Conference on Document

Analysis and Recognition, pages 29–32, 1999.

[12] R.C. Gonzalez and R.E. Woods. Digital Image Processing. Addison-Wesley Pub-

lishing Company, Inc., 1993.

[13] O. Hori. A video text extraction method for character recognition. In International

Conference on Document Analysis and Recognition, pages 25–28, 1999.

104

[14] S.L. Horowitz and T. Pavlidis. Picture Segmentation by a Traversal Algorithm.

Computer Graphics and Image Processing, 1:360–372, 1972.

[15] J. Huang, Z. Liu, Y. Wang, Y. Chen, and E.K. Wong. Integration of multimodal

features for video classification based on hmm. In Proc. IEEE Signal Processing

Society Workshop on Multimedia Signal Processing, 1999.

[16] A.K. Jain. Algorithms for clustering data. Prentice Hall, Englewood Cliffs, NJ,

1988.

[17] A.K. Jain and B. Yu. Automatic Text Location in Images and Video Frames.

Pattern Recognition, 31(12):2055–2076, 1998.

[18] R. Jain, R. Kasturi, and B.G. Schunck. Machine Vision. McGraw Hill, 1995.

[19] K.Y. Jeong, K. Jung, E.Y. Kim, and H.J Kim. Neural network-based text loca-

tion for news video indexing. In Proc. IEEE International Conference on Image

Processing, pages 319–323, 1999.

[20] M. Kamel and A. Zhao. Extraction of Binary Character/Graphics Images from

Grayscale Document Images. Computer Vision, Graphics, and Image Processing,

55(3):203–217, May 1993.

[21] J.N. Kapur, P.K. Sahoo, and A.K.C. Wong. A New Method for Gray-Level Picture

Thresholding Using the Entropy of the Histogram. Computer Vision, Graphics, and

Image Processing, 29(3):273–285, March 1985.

105

[22] F. LeBourgeois. Robust Multifont OCR System from Gray Level Images. In Inter-

national Conference on Document Analysis and Recognition, volume 1, pages 1–5,

1997.

[23] C.-M. Lee and A. Kankanhalli. Automatic Extraction of Characters in Complex

Scene Images. International Journal of Pattern Recognition and Artificial Intelli-

gence, 9(1):67–82, February 1995.

[24] S.-W. Lee and Y.J. Kim. Direct Extraction of Topographical Features for Gray

Scale Character Recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 17(7):724–728, July 1995.

[25] H. Li and D. Doermann. Automatic text tracking in digital videos. In IEEE Second

Workshop on Multimedia Signal Processing, pages 21–26, 1998.

[26] H. Li, D. Doermann, and O. Kia. Text extraction and recognition in digital video.

In IAPR International Workshop on Document Analysis Systems, pages 119–128,

1998.

[27] H. Li, D. Doermann, and O Kia. Automatic Text Detection and Tracking in Digital

Video. IEEE Transactions on Image Processing, 9(1):147–156, 2000.

[28] R. Lienhart and F. Stuber. Automatic Text Recognition for Video Indexing. In

Proceedings of the ACM International Multimedia Conference & Exhibition, pages

11–20, 1996.

106

[29] R. Lienhart and F. Stuber. Automatic Text Recognition in Digital Videos. In

Proceedings of SPIE, volume 2666, pages 180–188, 1996.

[30] R. Lienhart and F. Stuber. Indexing and Retrieval of Digital Video Sequences

based on Automatic Text Recognition. In Proceedings of the ACM International

Multimedia Conference & Exhibition, pages 419–420, 1996.

[31] V.Y. Mariano and R. Kasturi. Locating Uniform-Colored Text in Video Frames. In

Proc. International Conference on Pattern Recognition, volume 4, pages 539–542,

2000.

[32] N. Merhav and V. Bhaskaran. Fast algorithms for dct-domain image down-sampling

and for inverse motion compensation. IEEE Transactions on Circuits and Systems

for Video Technology, 7:468–476, 1997.

[33] S. Messelodi and C.M. Modena. Automatic Identification and Skew Estimation of

Text Lines in Real Scene Images. Pattern Recognition, 32(5):791–810, May 1999.

[34] Joan L. Mitchell, William B. Pennebaker, Chad E. Fogg, and Didier J. LeGall.

MPEG Video Compression Standard. Digital Multimedia Standards Series. Chap-

man and Hall, 1997.

[35] G. Nagy. Twenty Years of Document Image Analysis in PAMI. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22(1):38–62, 2000.

107

[36] Y. Nakajima, A. Yoneyama, H. Yanagihara, and M. Sugano. Moving Object Detec-

tion from MPEG Coded Data. In Proceedings of SPIE, volume 3309, pages 988–996,

1998.

[37] W. Niblack. An introduction to digital image processing. Prentice-Hall International,

1986.

[38] J. Ohya, A. Shio, and S. Akamatsu. Recognizing Characters in Scene Images. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 16:214–224, 1994.

[39] N. Otsu. A threshold selection method from gray-scale histograms. IEEE Transac-

tions on Systems, Man and Cybernetics, 9(1):62–66, 1979.

[40] M. Pilu. On Using Raw MPEG Motion Vectors to Determine Global Camera Mo-

tion. In Proceedings of SPIE, volume 3309, pages 448–459, 1998.

[41] Charles A. Poynton. Frequently asked questions about colour.

http://ftp.inforamp.net/pub/users/poynton/doc/colour/, 1995.

[42] W.K. Pratt. Digital Image Processing, 2nd Ed. John Wiley & Sons, 1991.

[43] W. Qi, L. Gu, H. Jiang, X.R. Chen, and H.J. Zhang. Integrating visual, audio and

text analysis for news video. In Proc. IEEE International Conference on Image

Processing, pages 520–523, 2000.

[44] T. Ridler and S. Calvard. Picture thresholding using an iterative selection method.

IEEE Transactions on Systems, Man and Cybernetics, 8(8):630–632, 1978.

108

[45] T. Sato, T Kanade, E.K. Hughes, and M.A. Smith. Video OCR for Digital News

Archive. In IEEE International Workshop on Content–Based Access of Image and

Video Databases CAIVD’98, pages 52–60, January 1998.

[46] M.v.d. Schaar-Mitrea and P.H.N. de With. Compression of Mixed Video and Graph-

ics Images for TV Systems. In SPIE Visual Communications and Image Processing,

pages 213–221, 1998.

[47] B.G. Sherlock and D.M. Munro. Algorithm 749: Fast Discrete Cosine Transform.

ACM Transactions on Mathematical Software, 21(4):372–378, 1995.

[48] J.C. Shim, C. Dorai, and R. Bolle. Automatic Text Extraction from Video for

Content-Based Annotation and Retrieval. In Proc. International Conference on

Pattern Recognition, pages 618–620, 1998.

[49] J.C. Shim, C. Dorai, and R. Bolle. Automatic Text Extraction from Video for

Content-Based Annotation and Retrieval. Technical Report RC21087(94340), IBM

T.J. Watson Research Division, Yorktown Heights, NY, 1998.

[50] C.S. Shin, K.I. Kim, M.H. Park, and H.J. Kim. Support vector machine-based text

detection in digital video. In Proc. IEEE Signal Processing Society Workshop, pages

634–641, 2000.

[51] Terra Lycos, Inc. Lycos. http://www.lycos.com/.

109

[52] H.C. Tom and H.K. Katsaggelos. Resolution enhancement of monochrome and

color video using motion compensation. IEEE Transactions on Image Processing,

10(2):278–287, 2001.

[53] Y. Watanabe, Y. Okada, K. Kaneji, and Y. Sakamoto. Retrieving related tv news

reports and newspaper articles. IEEE Intelligent Systems, pages 40–44, Septem-

ber/October 1999.

[54] L.L. Winger, M.E. Jernigan, and J.A. Robinson. Character Segmentation and

Thresholding in Low-Contrast Scene Images. In Proceedings of SPIE, volume 2660,

pages 286–296, 1996.

[55] A.K.C. Wong and P.K. Shaoo. A Gray-Level Threshold Selection Method Based on

Maximum Entropy Principle. IEEE Transactions on Systems, Man, and Cybernet-

ics, 19(4):866–871, July 1989.

[56] E.K. Wong and M. Chen. A robust algorithm for text extraction in color video.

In Proc. IEEE International Conference on Multimedia and Expo, pages 797–800,

2000.

[57] V. Wu, R. Manmatha, and E.M. Riseman. Finding Text in Images. In Second ACM

International Conference on Digital Libraries, 1997.

[58] P. Zhu and P.M. Chirlian. On Critical-Point Detection of Digital Shapes. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 17(8):737–748, August

1995.

