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Abstract—In 2014, as part of the NASA Operation IceBridge 

project, the Center for Remote Sensing of Ice Sheets operated a 

multi-beam synthetic aperture radar depth sounder/imager over 

the Canadian Arctic Archipelago (CAA) to generate digital 

elevation models (DEMs) of the glacial basal topography. In this 

work, we briefly describe the processing steps that led to the 

generation of these DEMs, algorithm improvements over 

previously published results, and assess the results from two 

different perspectives. First, we evaluate the self-consistency of the 

DEMs where flight paths cross over each other and two 

measurements are made at the same location. Secondly, we 

compare the quality of the outputs of the ice-bottom tracker before 

and after applying manual corrections to the tracker results; the 

tracker is an algorithm that we implemented to automatically 

track the ice-bottom. Even though the CAA ice-caps are 

mountainous areas, where the scenes often have ice and no ice 

regions, which makes the imaging complicated, the statistical 

results show good tracking performance and a good match 

between the overlapped DEMs, where the mean error of the 

crossover DEMs is 37±9 m. 

Keywords— Synthetic aperture radar imaging, SAR, ice, ice-

bottom tracking, tomography, DEM 

I. INTRODUCTION  

The Canadian Arctic Archipelago (CAA) contains one-third 
of the global volume of land ice outside the ice sheets, but its 
contribution to sea-level change is largely unknown. A recent 
mass balance estimate indicated a loss of 61 ± 7  (Gt/yr) of ice, 
contributing 0.17 ± 0.02 mm/yr to sea-level rise [1].  The present 
work is to generate DEMs of the ice bottom to improve estimates 
of the present sea-level contribution from the CAA ice-caps and 
to supply boundary conditions to ice dynamics models that will 
enable understanding of the basal controls on the glaciers in 
order to predict future contributions to sea-level [2]. 

In this work, an airborne Multichannel Coherent Radar Depth 
Sounder (MCoRDS), which was developed at the University of 
Kansas [3], was used to collect data from the Canadian Arctic 
Archipelago (CAA) as part of the NASA Operation IceBridge 
2014 arctic campaign. The radar was equipped with a 15 sensor 
array in the cross-track, where the center 7 sensors were used for 
transmit and all 15 sensors each received and recorded an 
independent channel of data. Here, we only used the data from 

the center 7 sensors, which are mounted on the fuselage. The 
radar was operated in a time multiplexed multi-beam mode, 
where the first beam looked left (−30∘) of nadir, then at nadir, 
and then right (30∘) of nadir as shown in Fig. 1a. With a transmit 
Hanning window, most of the energy is contained in a 30∘ 
beamwidth. The transmitted up-chirp was centered on 195 MHz, 
had a 30 MHz bandwidth, and a pulse duration of 3 𝜇𝑠. The 
corresponding range-resolution is about 5 m in ice. The azimuth 
SAR resolution is 2.5m. At a 1000m AGL flight altitude, the 
SAR aperture is about 480m for a surface target. The pulse 
repetition frequency (PRF) is 12 KHz with 13 presums for each 
beam for an effective recorded PRF of 307 Hz. 

Three main radar processing steps were applied to form a 3D 
image of the scene. These are: pulse compression, synthetic 
aperture radar (SAR) processing, and array processing. These 
steps are detailed in Section 2.A. The results from these 
processing steps then go into an automatic layer tracker, which 
is an algorithm that automatically tracks the bottom (i.e. the bed) 
of the ice caps. This tracked layer, along with other inputs, were 
used to generate the digital elevation models (DEMs) of the ice-
bottom. These are detailed in Section 2.B. In Section 3 we self-
assess the generated DEMs by doing a crossover analysis, where 
the DEMs from crossing flight paths are compared.  Also, we 
quantify the quality of the automated tracker by comparing the 
tracked layer before and after applying manual corrections by 
trained analysts. These results are discussed in Section 3, before 
we conclude our work in Section 4. In this work, our main 
contributions are: 1) generated the DEMs for all the data 
segments from the CAA (102 DEMs from 5 segments), where 

 
Fig. 1. a. Transmit configuration. b. SAR resolution. 



 

 

 

we previously only had generated 7 DEMs and published the 
work in a separate paper, 2) performed crossover analysis to 
evaluate our results, and 3) modified the ice-layer tracker to 
better track the ice-surface and bottom and analyzed the new 
results. 

II. ALGORITHM DESCRIPTION  

A. Radar Processing and 3D Image Formation 

Synthetic aperture radar (SAR) images are 2D images of the 
scene, where one axis represents the slow-time dimension (i.e. 
along-track) and the other axis represents the fast-time 
dimension (i.e. range-time). Pulse compression is used to 
resolve the targets in the range dimension by matched-filtering 
the received echoes (after being pre-conditioned). Then the data 
are focused in the along-track dimension using the frequency-
wavenumber (f-k) migration algorithm. Each pixel in the SAR 
image contains direction of arrival (DoA) information from all 
targets at a specific along-track location (i.e. range-line) and a 
specific range-time (i.e. range bin). After these two steps we can 
view the scene as a thin sheet in the cross-track dimension, with 
a handful of unresolvable targets that lie in a constant range-time 
toroid around the radar, as shown in Fig. 1b. These targets can 
be resolved by estimating their DoAs using array-processing 
techniques, which is the third step in the 3D image formation 
process. Some other conditioning steps are also applied during 
these steps, such as motion compensation and receiver 
equalization. 

In this work, the MUltiple Signal Classification (MUSIC) 
technique was used to estimate the directions of the echoes 
impinging on the array-antenna of the airborne radar [4]. We 
used MUSIC as a beamformer rather than an estimator (i.e. scan 
over DoAs from −90∘  to 90∘) because the latter requires the 
exact number of sources or model number to be known 
(otherwise the tracker may track false targets or miss targets all 
together). Current efforts to estimate the model number using 
standard eigen-analysis of the data covariance matrices have 
failed due to a complicated eigenstructure that may be due to the 
time-bandwidth product of the array and multipath effects. The 
model number or assumed number of sources is two for each 
beam. In other words, the signal eigen-space for each beam is 
assumed to have a dimension of two. The output of the 
beamformer is a 3D image where the dimensions are along-
track, range, and direction of arrival. The beamformer has the 
advantage that even when the signal eigen-space is not precisely 
estimated, there is still likely to be some reduction in the 
correlation between the actual source’s steering vector and the 
null space of the signal eigen-space which can aid the ice bottom 
tracker even though it is not the steering vector with the lowest 
correlation due to errors in the signal eigen-space estimation. (In 
the absence of other information, the steering vector leading to 
the lowest correlation is usually taken to be the most likely DoA 
for the source.) 

B. Layer-Tracking Algorithm and DEM generation 

Since manual tracking of the ice-bottom is impractical on a 

large scale, we have implemented an (automated) sequential 

tree-reweighted (TRW-S) algorithm for extracting the ice-

bottom surface as well as a browser to visualize the 3D images 

[5,7]. The word ‘layer’ here refers to the ice-surface or ice-

bottom. 
There are four main inputs to the layer-tracker (see Fig. 2):  

1. The processed radar data is the 3D image where the 

ice-surface and ice-bottom need to be tracked. 

2. The ice-mask [6] is a binary raster that is used to 

determine at each DoA whether there is ice or not. This 

is useful to force the automatic layer-tracker to alter 

the cost calculation accordingly and forces the ice-

surface and ice-bottom to merge where there is no ice.  

3. For each angle of incidence in the 3D image, the a 

priori surface DEM from ArcticDEM is used to find 

an estimate of the range-time to the ice-surface. Aside 

from providing the surface location, it is used to 1) 

extract image intensity properties of the surface 

scattering that are used to track the unknown ice-

bottom and 2) to perform a rough calibration of the 

radar steering vectors by adjusting the radar-estimated 

DoA to match the surface-DEM-derived DoA. The 

averaged adjustment is then applied to the ice bottom 

for which there is no a priori information. 

4. Ground truth points indicate where the ice-bottom 

layer should pass through. These are human labeled 

and only available for the nadir direction. The tracker 

does not assume these points are perfect, but the cost 

function is lower for layers that pass through them.  

 

The tracker [7] was modified in several ways to improve its 

performance. The tracker optimization is based on a message 

passing algorithm in which each pixel in the image passes a 

“cost” message to its neighboring pixels to the left and right 

(direction of arrival dimension) and forward and backward 

(along-track dimension) in every iteration loop as shown in Fig. 

3a. In [7], although messages are passed in all directions, in 

each of the two dimensions there is a preferential direction 

where the current iteration message is propagated while in the 

opposite direction the previous iteration message was 

propagated. This causes a strong bias towards the side of the 

image that the preferential direction starts from. For example, 

when the preferential direction is left to right, the left-most side 

of the image had a stronger effect on the result than all other 

columns because its message would be passed all the way 

across the image in a single iteration. [7] dealt with this by 

propagating messages from the left to right and then right to left 

 
Fig 2. Input/output of the ice-layer tracker. 



 

 

 

and from up to down and then down to up in each loop. The 

issue with this solution was that the most extreme directions of 

arrival (far-left and far-right), where the signal quality is worst, 

were being given too much influence. Since we have ground 

truth at nadir and the signal quality is often best at nadir, the 

preference direction was changed to be outward from nadir. So 

on the left side of the image, the preferential direction is toward 

the left and on the right side of the image, the preferential 

direction is toward the right (green arrows in Fig. 3). In this 

way, the nadir column asserts the greatest influence. 
The cost message includes two components, a unary cost for 

each pixel that is independent of the layer and a binary cost 

which depends on how the layer changes from pixel to pixel 

(Fig. 3b). The unary term includes several components that we 

modified to improve the tracking. The first term is the template 

energy which was set by the mean squared difference between 

a template peak waveform and the image intensity surrounding 

the pixel in question. A single template was used on all pixels 

and was not scaled with the pixel intensity: a peak waveform 

that exactly matches the template intensity scores the lowest 

cost of zero while a peak waveform with a larger peak value 

than the template (and presumably higher quality) would score 

a higher cost because the mean squared difference is used. 

Instead of using the mean squared difference, we now use the 

negative of the correlation between the template and the 

waveform around the image pixel to set the cost. 

Another term in the unary cost is the bottom location or bin 

in the nadir direction which is a priori information available at 

each along-track position. In [7] this was constructed to ensure 

the ice bottom layer passed beneath this bottom bin. The bottom 

bin cost was modified to force the ice bottom layer to pass 

within a 20-pixel neighborhood of the bottom bin rather than 

strictly beneath. This improved results when the bottom bin was 

too low due to errors in the human labeling of the nadir bottom 

bin. Although the bottom bin tends to be fairly accurate, the 

previous tracker implementation would allow the bottom layer 

to pass far beneath the bottom bin with no cost penalty. 

The final term that was modified is a surface repulsion term 

that increases the ice bottom layer cost if it approaches the ice 

surface. This was necessary because the layer tracker has no 

other way to choose one or the other layer to track and, 

furthermore, the ice surface is generally stronger and more 

consistent. Combined in this term, but not fully described in [7], 

was an ice mask term that overrode this term when there was 

no ice present. In this case the ice bottom tracker was supposed 

to be equal to the ice surface to indicate zero ice thickness. The 

issue is that at the boundaries between ice and no-ice, the ice 

bottom often gradually separates from the ice surface. To 

accommodate this, the surface repulsion term was modified to 

gradually increase away from no ice edges and another term 

was added to attract the layers together as they approach a no 

ice region. This modification helped remove artificial 

discontinuities at the no-ice/ice transitions. 

The binary term is used to control the smoothness of the 

surface. This allows the tracker to work through low quality 

regions where several pixel choices might be equally weighted 

based on image intensity only. The binary cost increases the 

likelihood that the pixel that produces the smoothest surface 

overall will be the lowest cost. In [7], the smoothing was set to 

produce a constant range layer in the cylindrical coordinate 

system of the image. The problem is that a constant range layer 

in the cylindrical coordinate system is a tube in Cartesian space. 

The smoothing term was modified to set to lowest cost an ice 

bottom layer with the same range-slope as the ice surface. 

Although this is still not a flat surface, it is generally flatter and 

more realistic than the tube and was simpler computationally 

than calculating a flat ice bottom in Cartesian space which must 

account for ice refraction from a non-flat ice surface layer. 

After the layer tracker is run, the layers are visualized by 

viewing the layer overlaid on the radar image in three 

dimensions along with a corresponding satellite image map and 

ice mask that shows the flight track and image pixel locations. 

Where needed, the bottom layer is manually corrected by 

adding additional ground truth points to the 3D image and 

corrections are made to the ice mask. The tracker is then rerun 

in small neighborhoods with this new information to correct 

issues. Poor data quality areas are also tagged so that they are 

not included in the final output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. RESULTS AND DISCUSSION  

In this section, we assess our results from two perspectives. 
First, we self-assess our results by generating the DEMs of the 
overlapped areas from the crossing tracks (crossovers), and 
second, we present and discuss several statistics of the error 
between the output of the automatic layer-tracker before and 
after manual correction (MC). By MC we mean the manual 
correction by adding more ground truth, fixing the ice mask, and 
the data quality labeling step . 

 
Fig. 3. Block diagram showing how TRW-S algorithm works. 
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A. DEM Crossovers 

The MC layers are used for all the results in this section; most 
importantly this includes the manual corrections. We have a 
total of 20 crossovers, but due to space limitations we have only 
illustrated two. Fig. 4 shows two crossover examples over ice 
which are also representative of the types of error patterns seen 
in the 20 crossovers. Each example has four plots, which are the 
zoomed version of the original DEMs with the intersection 
marked in red along with an inset showing the error map, and a 
sample slice from each DEM at the intersection of the two flight 
lines showing the ice-surface and ice-bottom after applying the 
automatic tracker (detailed in Section 2.B) in addition to manual 
corrections. The flight line for each DEM is shown in black. The 
location of the 3D slice at the intersection of the flight lines is 
shown in the error map and marked to indicate the left and right 
DoA portions.  In the slice view, the left and right DoA portions 
are marked in red and white, respectively. The difference 
between the DEMs is the crossover error since, from a self 
consistency standpoint, the two DEMs would ideally be the 
same and the difference would be zero. Here a slice from the 3D 
image is the cross-track image at a particular range line, i.e. a 2D 
cross section from the 3D image. Table 1 shows the statistics of 
the overlapped DEM errors for the crossovers in Fig. 4. Over all 
20 crossovers, the mean absolute error is 37 m, the median 
absolute error is 12 m, and the root mean square-error (RMSE) 
is 37±9 m. If we assume Gaussian statistics for the errors in each 
of the individual DEMs, then the RMSE for the crossovers that 

is shown here should be √2 larger than the RMSE of the 
individual images. Fig. 5 shows the change of the average 
RMSE over all 20 crossovers as the largest errors are removed. 
This plot shows that the lower 70% of the errors have an RMSE 
of 10m. Table 2 gives the same results as in Table 1, but with 
the largest 10% of errors removed. The resultant reduction in 
error statistics is larger than would be expected for Gaussian 
distributed errors. These results tell us that there is usually a 
good match between the overlapped DEMs, but there are a few 
large errors that are causing the mean statistics to be large (i.e. a 
heavy tail distribution due to outliers). From examining Fig. 4B, 
if the tracker fails to track the correct surface, a whole region 
may have a very large error and create a heavy tail distribution. 

The DEM errors can result from several causes. We divide 
these into a few categories: 1) Poor data quality, due to 
shadowing and weak backscatter. Different flight paths and 
improved instrument parameters may improve this category, but 
these causes cannot be changed in post processing. For example, 
in Fig. 4B, there seems to be no bottom signal in the right-most 
angular bins of the 3D slice example of frame 21. In this case, 
the ice-bottom layer is likely wrong since there is no or very little 
signal to track. 2) Errors due to suboptimal array processing. 
The MUSIC method is known to be suboptimal to MLE [8] and 
we assume a fixed model order of 2 even though the scene in 
general may have more or less than 2 scattering sources. The 
beamformer was setup to scan through 64 DoA bins with 
uniform sampling in wavenumber. This DoA sample spacing 
limits the accuracy of the DoA resolution. 3) Tracking errors. 
The tracking algorithm nominally follows the path with the 
largest peak correction in each DoA bin (slice column). 
Parametric DoA estimation approaches usually search for the 
DoA with the largest results in each range bin (slice row). The 
tracker also does not perform an exhaustive search of all paths 
since this is an np-hard problem and therefore the ice-bottom 
result may not be the best regardless of other deficiencies.  

 

B. Layer-Tracking Assessment 

Here we assess the ice-bottom tracking results by looking at 

statistics of the error (measured in range-bins) between the MC 

output, which has been manually corrected, and the result with 

no MC (NMC) which is the direct output from the automatic 

layer-tracker. Results are averaged over all 102 frames in this 

CAA dataset and each frame contains approximately 3332 

slices. The reference layer is the MC ice-bottom layer. Thus, 

when the error is positive it represents the number of range-bins 

the NMC tracking result is above the MC tracking result. Note 

that the layer data from the first and last 5 DOA-bins, which 

correspond to the near-grazing angles, were removed in this 

comparison and in the generated DEM crossovers, as shown in 

the slice plots in Fig. 4. At these angles, the effective array 

aperture is very small and the received echoes are weak. 
Table 3 shows the mean, median, and RMSE of the absolute 

error. Based on our previous published results, the old algorithm 

 
Fig. 5. Change of the average RMSE as we remove a percentage 

of the largest errors. 
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Table 1: Statistics from the error of the overlapped DEMS. 

Fig 3. a b 

Mean Error [m] 21 89 

Median Error [m] 13 38 

RMSE [m] 30 142 

 

Table 2: Statistics from the error of the overlapped DEMS when 

the largest 10% of the errors were removed. 

Fig 3. a b 

Mean Error [m] 15 60 

Median Error [m] 11 32 

RMSE [m] 20 92 

 
Table 3: Statistics of the layer-tracker errors (measured in 

range-bins). 
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had a mean error of 11.9 range bins over seven test frames 
whereas the new algorithm has a mean error of 2.3 range bins 
over the same test frames. Fig. 6 shows the cumulative 
distribution function of these errors. We see that ~60% of the 
errors are 0 (i.e. identical), 87% of the errors are within 5 range-
bins from the MC results, and ~96 % of the errors are within 25 
range-bins from the MC results. These errors arise from 
different factors related to the error types mentioned in Section 
3.A. From a qualitative inspection, the largest errors occur when 
the wrong layer is tracked which often means a few manually 
placed ground truth points allow the algorithm to track the 
correct layer. 

These results show a good tracking capability, but with 
limitations where data quality is poor. In some cases, the MC 
result will also have errors, even for a trained analyst, especially 
in the places where the data quality is low (e.g. due to weak 
target echoes).  

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

An automatic ice-layer tracker was implemented to track the 
ice-surface and ice-bottom based on the 3D images formed from 
the collected data, the ice-mask, the surface DEMs, and the 
human-labeled ground-truth. The DEMs of the basal topography 
of the Canadian Arctic Archipelago were then extracted using 
the tracked ice-bottom. Finally, these results were evaluated by 
determining the error statistics from the overlapping DEMs, and 
by comparing the tracked ice-bottom to the manually corrected 
one. We found that there is a good match between these 
overlapping DEMs, where, the mean error of the crossover 
DEMs is 37±9 m, while the average error of the automatically 
tracked ice-layers, relative to the manually corrected tracked 
layers, is 13.6 range-bins, with 4.7 range-bins average absolute 
mean error.  
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Fig. 6. Cumulative distribution function of the distance, 

measured in range-bins, between the manually corrected and 

non-manually corrected outputs of the layer-tracker. 
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Fig. 4. Examples of a consistent (A) and inconsistent (B) crossover. The inconsistent crossover is caused by weak basal scattering 

for which the tracker fails. The DEM for each flight line is shown along with the difference between the two. Example slices from 

the 3D images used to construct the DEMs are also given.  

 


