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Abstract. Lifelogging cameras capture everyday life from a first-person
perspective, but generate so much data that it is hard for users to browse
and organize their image collections effectively. In this paper, we propose
to use automatic image captioning algorithms to generate textual repre-
sentations of these collections. We develop and explore novel techniques
based on deep learning to generate captions for both individual images
and image streams, using temporal consistency constraints to create
summaries that are both more compact and less noisy. We evaluate our
techniques with quantitative and qualitative results, and apply captioning
to an image retrieval application for finding potentially private images.
Our results suggest that our automatic captioning algorithms, while im-
perfect, may work well enough to help users manage lifelogging photo
collections.1
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1 Introduction

Wearable cameras that capture first-person views of people’s daily lives have
recently become affordable, lightweight, and practical, after many years of being
explored only in the research community [1, 12, 22]. These new devices come
in various types and styles, from the GoPro, which is marketed for recording
high-quality video of sports and other adventures, to Google Glass, which is a
heads-up display interface for smartphones but includes a camera, to Narrative
Clip and Autographer, which capture “lifelogs” by automatically taking photos
throughout one’s day (e.g., every 30 seconds). No matter the purpose, however,
all of these devices can record huge amounts of imagery, which makes it difficult
for users to organize and browse their image data.

In this paper, we attempt to produce automatic textual narrations or captions
of a visual lifelog. We believe that describing lifelogs with sentences is most
natural for the average user, and allows for interesting applications like generating

1 An expanded version of this paper is available at https://arxiv.org/abs/1608.03819.
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automatic textual diaries of the “story” of someone’s day based on their lifelogging
photos. We take advantage of recent breakthroughs in image captioning using
deep learning that have shown impressive results for consumer-style images from
social media [14, 16], and evaluate their performance on the novel domain of
first-person images (which are significantly more challenging due to substantial
noise, blurring, poor composition, etc.). We also propose a new strategy to try
to encourage diversity in the sentences, which we found to be particularly useful
in describing lifelogging images from different perspectives.

Of course, lifelogging photo streams are highly redundant since wearable
cameras indiscriminately capture thousands of photos per day. Instead of simply
captioning individual images, we also consider the novel problem of jointly
captioning lifelogging streams, i.e. generating captions for temporally-contiguous
groups of photos corresponding to coherent activities or scene types. Not only
does this produce a more compact and potentially useful organization of a user’s
photo collection, but it also could create an automatically-generated textual
“diary” of a user’s day based only on their photos. The sentences themselves are
also useful to aid in image retrieval by keyword search, which we illustrate for the
specific application of searching for potentially private images (e.g. containing
keywords like “bathroom”). We formulate this joint captioning problem in a
Markov Random Field model and show how to solve it efficiently.

To our knowledge, we are the first to propose image captioning as an important
task for lifelogging photos, as well as the first to apply and evaluate automatic
image captioning models in this domain. To summarize our contributions, we
learn and apply deep image captioning models to lifelogging photos, including
proposing a novel method for generating photo descriptions with diverse structures
and perspectives; propose a novel technique for inferring captions for streams of
photos taken over time in order to find and summarize coherent activities and
other groups of photos; create an online framework for collecting and annotating
lifelogging images, and use it to collect a realistic lifelogging dataset consisting
of thousands of photos and thousands of reference sentences and evaluate these
techniques on our data, both quantitatively and qualitatively, under different
simulated use cases.

2 Related Work

While wearable cameras have been studied for over a decade in the research
community [1, 12, 22], only recently have they become practical enough for
consumers to use on a daily basis. In the computer vision field, recent work has
begun to study this new style of imagery, which is significantly different from
photos taken by traditional point-and-shoot cameras. Specific research topics
have included recognizing objects [8, 18], scenes [9], and activities [4, 7, 25, 26].
Some computer vision work has specifically tried to address privacy concerns,
by recognizing photos taken in potentially sensitive places like bathrooms [29],
or containing sensitive objects like computer monitors [18]. However, these
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techniques typically require that classifiers be explicitly trained for each object,
scene type, or activity of interest, which limits their scalability.

Instead of classifying lifelogging images into pre-defined and discrete categories,
we propose to annotate them with automatically-generated, free-form image
captions, inspired by recent progress in deep learning. Convolutional Neural
Networks (CNNs) have recently emerged as powerful models for object recognition
in computer vision [6, 10,19,28], while Recurrent Neural Networks (RNNs) and
Long Short-Term Memory (LSTMs) have been developed for learning models of
sequential data, like natural language sentences [5,11]. The combination of CNNs
for recognizing image content and RNNs for modeling language have recently
been shown to generate surprisingly rich image descriptions [14,23,32], essentially
“translating” from image features to English sentences [15].

Some closely related work has been done to generate textual descriptions from
videos. Venugopalan et al. [31] use image captioning model to generate video
descriptions from a sequence of video frames. Like previous image captioning
papers, their method estimates a single sentence for each sequence, while we
explicitly generate multiple diverse sentences and evaluate the image-sentence
matching quality to improve the captions from noisy, poorly-composed lifelogging
images. Zhu et al. [33] use neural sentence embedding to model a sentence-
sentence similarity function, and use LSTMs to model image-sentence similarity
in order to align subtitles of movies with sentences from the original books. Their
main purpose is to find corresponding movie clips and book paragraphs based on
visual and semantic patterns, whereas ours is to infer novel sentences from new
lifelogging image streams.

3 Lifelogging Data Collection

To train and test our techniques, two of the authors wore Narrative Clip lifelogging
cameras over a period of about five months (June-Aug 2015 and Jan-Feb 2016), to
create a repository of 7,716 lifelogging photos. To facilitate collecting lifelogging
photos and annotations, we built a website which allowed users to upload and
label photos in a unified framework, using the Narrative Clip API.2

We collected textual annotations for training and testing the system in two
different ways. First, the two authors and three of their friends and family
members used the online system to submit sentences for randomly-selected
images, producing 2,683 sentences for 696 images. Annotators were asked to
produce at least two sentences per image: one that described the photo from a
first-person perspective (e.g., “I am eating cereal at the kitchen table.”) and one
from a third-person perspective (e.g. “A bowl of cereal sits on a kitchen table.”).
We requested sentences from each of these perspectives because we have observed
that some scenes are more naturally described by one perspective or the other.
Annotators were welcome to enter multiple sentences, and each image was viewed
by an average of 1.45 labelers.

2 https://open-staging.getnarrative.com/api-docs
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Second, to generate more diversity in annotators and annotations, we published
293 images3 on Amazon’s Mechanical Turk (AMT), showing each photo to at
least three annotators and, as before, asking each annotator to give at least one
first-person and one third-person sentence. This produced a set of 1,813 sentences,
or an average of 6.2 sentences per image. A total of 121 distinct Mechanical Turk
users contributed sentences.

Finally, we also downloaded COCO [21], a popular publicly-available dataset
of 80,000 photos and 400,000 sentences. These images are from Internet and social
media sources, and thus are significantly different than the lifelogging context we
consider here, but we hypothesized that this may be useful additional training
data to augment our smaller lifelogging dataset.

4 Automatic Lifelogging Image Captioning

We now present our technique for using deep learning to automatically annotate
lifelogging images with captions. We first give a brief review of deep image
captioning models, and then show how to take advantage of streams of lifelogging
images by estimating captions jointly across time, which not only helps reduce
noise in captions by enforcing temporal consistency, but also helps summarize
large photo collections with smaller subsets of sentences.

4.1 Background: Deep networks for image captioning

Automatic image captioning is a difficult task because it requires not only
identifying important objects and actions, but also describing them in natural
language. However, recent work in deep learning has demonstrated impressive
results in generating image and video descriptions [14,31,33]. The basic high-level
idea is to learn a common feature space that is shared by both images and words.
Then, given a new image, we generate sentences that are “nearby” in the same
feature space. The encoder (mapping from image to feature space) is typically a
Convolutional Neural Network (CNN), which abstracts images into a vector of
local and global appearance features. The decoder (mapping from feature space
to words) produces a word vector using a Recurrent Neural Network (RNN),
which abstracts out the semantic and syntactic meaning.

In the prediction stage, a forward pass of LSTM generates a full sentence
terminated by a stop word for each input image. Similar image captioning models
have been discussed in detail in recent papers [14,31,32]. In section 4.2, we discuss
in detail how to generate diverse captions for a single image.

4.2 Photo Grouping and Activity Summarization

The techniques in the last section automatically estimate captions for individual
images. However, lifelogging users do not typically capture individual images in

3 We randomly chose 300, but removed 7 that we were not comfortable sharing with
the public (e.g. photos of strangers whose permission we were not able to obtain).
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isolation, but instead collect long streams of photos taken at regular intervals
over time (e.g., every 30 seconds for Narrative Clip). This means that evidence
from multiple images can be combined together to produce better captions than
is possible from observing any single image, in effect “smoothing out” noise in any
particular image by examining the photos taken nearby in time. These sentences
could provide more concise summarizations, helping people find, remember, and
organize photos according to broad events instead of individual moments.

Suppose we wish to estimate captions for a stream of images I = (I1, I2, ..., IK),
which are sorted in order of increasing timestamps. We first generate multiple
diverse captions for each individual image, using a technique we describe in the
next subsection. We combine all of these sentences together across images into
a large set of candidates C (with |C| = d|I|, where d is the number of diverse
sentences generated per image; we use d = 15). We wish to estimate a sequence of
sentences such that each sentence describes its corresponding image well, but also
such that the sentences are relatively consistent across time. In other words, we
want to estimate a sequence of sentences S∗ = (S∗

1 , S
∗
2 , ..., S

∗
K) so as to minimize

an energy function,

S∗ = argmin
S=(S1,...,SK)

K∑
i=1

Score(Si, Ii) + β

K-1∑
j=1

1(Sj , Sj+1), (1)

where each Si ∈ C, Score(Si, Ii) is a unary cost function measuring the quality
of a given sentence Si in describing a single image Ii, 1(Sa, Sb) is a pairwise
cost function that is 0 if Sa and Sb are the same and 1 otherwise, and β is a
constant. Intuitively, β controls the degree of temporal smoothing of the model:
when β = 0, for example, the model simply chooses sentences for each image
independently without considering neighboring images in the stream, whereas
when β is very large, the model will try to find a single sentence to describe all
of the images in the stream.

Equation (1) is a chain-structured Markov Random Field (MRF) model [17],
which means that the optimal sequence of sentences S∗ can be found efficiently
using the Viterbi algorithm. All that remains is to define two key components of
the model: (1) a technique for generating multiple, diverse candidate sentences
for each image, in order to obtain the candidate sentence set C, and (2) the Score
function, which requires a technique for measuring how well a given sentence
describes a given image. We now describe these two ingredients in turn.

Generating Diverse Captions. Our joint captioning model above requires a
large set of candidate sentences. Many possible sentences can correctly describe
any given image, and thus it is desirable for the automatic image captioning
algorithm to generate multiple sentences that describe the image in multiple
ways. This is especially true for lifelogging images that are often noisy, poorly
composed, and ambiguous, and can be interpreted in different ways. Vinyals et
al. [32] use beam search to generate multiple sentences, by having the LSTM
model keep b candidate sentences at each step of sentence generation (where
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Fig. 1: Sample captions generated by models pre-trained with COCO and fine-
tuned with lifelogging dataset. Three different colors show the top three pre-
dictions produced in three beam searches by applying the Diverse M-Solutions
technique. Within each beam search, sentences tend to have similar structures and
describe from similar perspective; between consecutive beam searches, structures
and perspectives tend to be different.

b is called the beam size). However, we found that this existing technique did
not work well for lifelogging sentences, because it produced very homogeneous
sentences, even with a high beam size.

To encourage greater diversity, we apply the Diverse M-best solutions tech-
nique of Batra et al. [3], which was originally proposed to find multiple high-
likelihood solutions in graphical model inference problems. We adapt this tech-
nique to LSTMs by performing multiple rounds of beam search. In the first round,
we obtain a set of predicted words for each position in the sentence. In the second
round, we add a bias term that reduces the network activation values of words
found in the first beam search by a constant value. Intuitively, this decreases the
probability that a word found during the previous beam search being selected
again at the same word position in the sentence. Depending on the degree of
diversity needed, additional rounds of beam search can be conducted, each time
penalizing words that have occurred in any previous round.

Figure 1 presents sample automatically-generated results by using three
rounds of beam search and a beam size of 3 for illustration purposes. We see
that the technique successfully injects diversity into the set of estimated captions.
Many of the captions are quite accurate, including “A man is sitting at a table”
and “I am having dinner with my friends,” while others are not correct (e.g. “A
man is looking at a man in a red shirt”), and others are nonsensical (“There
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is a man sitting across the table with a man”). Nevertheless, the captioning
results are overall remarkably accurate for an automatic image captioning system,
reflecting the power of deep captioning techniques to successfully model both
image content and sentence generation.

Image-sentence quality alignment. The joint captioning model in Equa-
tion (1) also requires a function Score(Si, Ii), which is a measure of how well an
arbitrary sentence Si describes a given image Ii. The difficulty here is that the
LSTM model described above tells us how to generate sentences for an image,
but not how to measure their similarity to a given image. Doing this requires us
to explicitly align certain words of the sentence to certain regions of an image –
i.e. determining which “part” of an image generated each word. Karpathy et
al. [16] propose matching each region with the word with maximum inner product
(interpreted as a similarity measure) across all words in terms of learnable region
vectors and word vectors, and to sum all similarity measures over all regions
as the total score. We implement their method and train this image-sentence
alignment model on our lifelogging dataset. To generate the matching score
Score(Si, Ii) for Equation (1), we extract region vectors from image Ii, retrieve
trained word vectors for words in sentence Si, and sum similarity measures of
regions with best-aligned words.

Image Grouping Result. Finally, once captions have been jointly inferred for
each image in a photostream, we can group together contiguous substreams of
images that share the same sentence. Figure 2 shows examples of activity sum-
marization. In general, the jointly-inferred captions are reasonable descriptions
of the images, and much less noisy than those produced from individual images
in Figure 1, showing the advantage of incorporating temporal reasoning into the
captioning process. For example, the first row of images shows that the model
labeled several images as “I am talking with a friend while eating a meal in a
restaurant,” even though the friend is only visible in one of the frames, showing
how the model has propagated context across time. Of course, there are still
mistakes ranging from the minor error that there is no broccoli on the plate in
the second row to the more major error that the last row shows a piano and not
someone typing on a computer. The grammar of the sentences is generally good
considering that the model has no explicit knowledge of English besides what it
has learned from training data, although usage errors are common (e.g., “I am
shopping kitchen devices in a store”).

5 Experimental evaluation

We first use automatic metrics that compare to ground truth reference sentences
with quantitative scores. To give a better idea of the actual practical utility of
technique, we also evaluate in two other ways: using a panel of human judges
to rate the quality of captioning results, and testing the system in a specific
application of keyword-based image retrieval using the generated captions.
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Fig. 2: Randomly-chosen samples of activity summarization on our dataset.

5.1 Quantitative captioning evaluation

Automated metrics such as BLEU [24], CIDEr [30], Meteor [2] and Rouge-L [20]
have been proposed to score sentence similarity compared to reference sentences
provided by humans, and each has different advantages and disadvantages. We
present results using all of these metrics (using the MS COCO Detection Challenge
implementation4), and also summarize the seven scores with their mean.

Implementation. A significant challenge with deep learning-based methods is
that they typically require huge amounts of training data, both in terms of images
and sentences. Unfortunately, collecting this quantity of lifelogging images and
annotations is very difficult. To try to overcome this problem, we augmented our
lifelogging training set with COCO data using three different strategies: Lifelog
only training used only our lifelogging dataset, consisting of 736 lifelogging
photos with 4,300 human-labeled sentences; COCO only training used only
COCO dataset; and COCO then Lifelog started with the COCO only model,

4 https://github.com/tylin/coco-caption
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Table 1: Bleu1-4, CIDEr, Meteor and Rouge Scores for Diverse 3-Best Beams of
Captions on Test Set.

Datasets Metric

Training Testing Bleu-1 Bleu-2 Bleu-3 Bleu-4 CIDEr METEOR ROUGE Mean

Lifelog

Lifelog 100

0.669 0.472 0.324 0.218 0.257 0.209 0.462 0.373

COCO 0.561 0.354 0.206 0.118 0.143 0.149 0.374 0.272

COCO+Lifelog 0.666 0.469 0.319 0.210 0.253 0.207 0.459 0.369

Lifelog@Usr1 Lifelog@Usr2 0.588 0.410 0.279 0.189 0.228 0.195 0.431 0.331

Lifelog@2015 Lifelog@2016 0.557 0.379 0.249 0.160 0.325 0.202 0.425 0.328

and then used it as initialization when re-training the model on the lifelogging
dataset (i.e., “fine-tuning” [19]).

For extracting image features, we use the VGGNet [27] CNN model. The
word vectors are learned from scratch. Our image captioning model stacks two
LSTM layers, and each layer structure closely follows the one described in [32].
To boost training speed, we re-implemented LSTM model in C++ using the
Caffe [13] deep learning package. It takes about 2.5 hours for COCO pre-training,
and about 1 hour for fine-tuning on Lifelog dataset with 10,000 iterations for
both.

At test time, the number of beam searches conducted during caption inference
controls the degree of diversity in the output; here we use three to match the three
styles of captions we expect (COCO, first-person, and third-person perspectives).
Samples of predicted sentences are shown in Figure 1. This suggests that different
genres of training sentences contribute to tune hidden states of LSTM and thus
enable it to produce diverse structures of sentences in testing stage.

Results. Table 1 presents quantitative results of each of these training strategies,
all tested on the same set of 100 randomly-selected photos having 1,000 ground
truth reference sentences, using each of the seven automatic scoring metrics
mentioned above. We find that the Lifelog only strategy achieves much higher
overall accuracy than COCO only, with a mean score of 0.373 vs. 0.272. This
suggests that even though COCO is a much larger dataset, images from social
media are different enough from lifelogging images that the COCO only model
does not generalize well to our application. Moreover, this may also reflect
an artifact of the automated evaluation, because Lifelog only benefits from
seeing sentences with similar vocabulary and in a similar style as in the reference
sentences, since the same small group of humans labeled both the training and test
datasets. More surprisingly, we find that Lifelog only also slightly outperforms
COCO then lifelog (0.373 vs 0.369). The model produced by the latter training
dataset has a larger vocabulary and produces richer styles of sentences than
Lifelog only, which hurts its quantitative score. Qualitatively, however, it often
produces more diverse and descriptive sentences because of its larger vocabulary
and ability to generate sentences in first-person, third-person, and COCO styles.
Samples of generated diverse captions are shown in Figure 1.
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We conducted experiments with two additional strategies in order to simulate
more realistic scenarios. The first scenario reflects when a consumer first starts
using our automatic captioning system on their images without having supplied
any training data of their own. We simulate this by training image captioning
model on one user’s photos and testing on another. Training set has 805 photos and
3,716 reference sentences; testing set has 40 photos and 565 reference sentences.
The mean quantitative accuracy declines from our earlier experiments when
training and testing on images sampled from the same set, as shown in Table 1,
although the decline is not very dramatic (from 0.373 to 0.331), and still much
better than training on COCO (0.272). This result suggests that the captioning
model has learned general properties of lifelogging images, instead of overfitting
to one particular user (e.g., simply “memorizing” the appearance of the places
and activities they frequently visit and do).

The other situation is when an existing model trained on historical lifelogging
data is used to caption new photos. We simulate this by taking all lifelogging
photos in 2015 as training data and photos in 2016 as testing data. Training set
has 673 photos and 3,610 sentences; testing set has 30 photos and 172 sentences.
As shown in Table 1, this scenario very slightly decreased performance compared
to training on data from a different user (0.328 vs 0.331), although the difference
is likely not statistically significant.

5.2 Image captioning evaluation with human judges

We conducted a small study using human judges to rate the quality of our
automatically-generated captions. In particular, we randomly selected 21 images
from the Lifelog 100 test dataset (used in Table 1) and generated captions using
our model trained on the COCO then Lifelog scenario. For each image, we
generated 15 captions (with 3 rounds of beam search, each with beam size 5),
and then kept the top-scoring caption according to our model and four randomly-
sampled from the remaining 14, to produce a diverse set of five automatically-
generated captions per image. We also randomly sampled five of the human-
generated reference sentences for each image.

For each of the ten captions (five automatic plus five human), we showed the
image (after reviewing it for potentially private content and obtaining permission
of the photo-taker) and caption to a user on Amazon Mechanical Turk, without
telling them how the caption had been produced. We asked them to rate, on a
five-point Likert scale, how strongly they agreed with two statements: (1) “The
sentence or phrase makes sense and is grammatically correct (ignoring minor
problems like capitalization and punctuation,” and (2) “The sentence or phrase
accurately describes either what the camera wearer was doing or what he or she
was looking at when the photo was taken.” The task involved 630 individual
HITs from 37 users.

Table 2 summarizes the results, comparing the average ratings over the 5
human reference sentences, the average over all 5 diverse automatically-generated
captions (Auto-5 column), and the single highest-likelihood caption as estimated
by our complete model (Auto-top). About 92% of the human reference sentences
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Table 2: Summary of grammatical correctness and accuracy of lifelogging image
captions, on a rating scale from 1 (Strongly Disagree) to 5 (Strongly Agree), aver-
aged over 3 judges. Human column is averaged over 5 human-generated reference
sentences, Auto-5 is averaged over 5 diverse computer-generated sentences, and
Auto-top is single highest-likelihood computer-generated sentence predicted by
our model.

Grammar Accuracy

Rating Human Auto-5 Auto-top Human Auto-5 Auto-top

1 1.9% 7.6% 11.9% 2.9% 22.4% 21.4%
2 3.8% 10.0% 7.1% 3.8% 15.2% 7.1%
3 0.5% 5.7% 0.0% 4.8% 8.1% 7.1%
4 19.0% 17.6% 4.8% 22.4% 17.6% 19.0%
5 73.3% 59.0% 76.2% 65.2% 36.7% 45.2%

Mean 4.60 4.10 4.26 4.45 3.31 3.60

were judged as grammatically correct (i.e., somewhat or strongly agreeing with
statement (1)), compared to about 77% for the automatically-generated diverse
captions and 81% for the single best sentence selected by our model. Humans
also described images more accurately than the diverse captions (88% vs 54%),
although the fact that 64% of our single best estimated captions were accurate
indicates that our model is often able to identify which one is best among the
diverse candidates. Overall, our top automatic caption was judged to be both
grammatically correct and accurate 59.5% of the time, compared to 84.8% of the
time for human reference sentences.

We view these results to be very promising, as they suggest that automatic
captioning can generate reasonable sentences for over half of lifelogging images,
at least in some applications. For example, for 19 (90%) of the 21 images in the
test set, at least one of five diverse captions was unanimously judged to be both
grammatically correct and accurate by all 3 judges. This may be useful in some
retrieval applications where recall is important, for example, where having noise
in some captions may be tolerable as long as at least one of them is correct. We
consider one such application in the next section.

5.3 Keyword-based image retrieval

Image captioning allows us to directly implement keyword-based image retrieval
by searching on the generated captions. We consider a particular application of this
image search feature here that permits a quantitative evaluation. As mentioned
above, wearable cameras can collect a large number of images containing private
information. Automatic image captioning could allow users to find potentially
private images easily, and then take appropriate action (like deleting or encrypting
the photos). We consider two specific types of potentially embarrassing content
here: photos taken in potentially private locations like bathrooms and locker
rooms, and photos containing personal computer or smartphone displays which
may contain private information such as credit card numbers or e-mail contents.
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Table 3: Confusion matrices for two approaches on two tasks for detecting sensitive
images. Left: Results on 3-way problem of classifying into not sensitive, sensitive
place (bathroom), or digital display categories. Right: Results on 2-way problem
of classifying into sensitive or not (regardless of sensitivity type). Actual classes
are in rows and predicted classes are in columns.

3-way classification

CNN-based Caption-based

NotSen Place Display NotSen Place Display

NotSen 0.730 0.130 0.140 0.686 0.117 0.197
Place 0.189 0.811 0 0.151 0.792 0.057

Display 0.300 0.043 0.657 0.143 0.008 0.849

2-way classification

CNN-based Caption-based

NotSen Sen NotSen Sen

NotSen 0.730 0.270 0.686 0.314
Sen 0.317 0.683 0.161 0.839

We chose these two types of concerns specifically because they have been
considered by others in prior work: Korayem et al. [18] present a system for
detecting monitors in lifelogging images using deep learning with CNNs, while
Templeman et al. [29] classify images according to the room in which they were
taken. Both of these papers present strongly supervised based techniques, which
were given thousands of training images manually labeled with ground truth for
each particular task. In contrast, identifying private imagery based on keyword
search on automatically-generated captions could avoid the need to create a
training set and train a separate classifier for each type of sensitive image.

We evaluated captioning-based sensitive image retrieval against standard state-
of-the-art strongly-supervised image classification using CNNs [19] (although we
cannot compare directly to the results presented in [18] or [29] because we use
different datasets). We trained the strongly-supervised model by first generating
a training set consisting of photos having monitors and not having monitors,
and photos taken in bathrooms and locker rooms or elsewhere, by using the
ground truth categories given in the COCO and Flickr8k datasets. This yielded
34,736 non-sensitive images, 6,135 images taken in sensitive places, and 4,379
images with displays. We used pre-trained AlexNet model (1000-way classifier
on ImageNet data) and fine-tuned on our dataset by replacing the final fully
connected layer with a 3-way classifier to correspond with our three-class problem.

We also ran the technique proposed here, where we first generate automatic
image captions, and then search through the top five captions for each image for a
set of pre-defined keywords (specifically “toilet,” “bathroom,” “locker,” “lavatory,”
and “washroom” for sensitive place detection, and “computer,” “laptop,” “iphone,”
“smartphone,” and “screen” for display detection). If any of these keywords is
detected in any of the five captions, the image is classified as sensitive, and
otherwise it is estimated to be not sensitive.

Table 3 presents the confusion matrix for each method, using a set of 600
manually-annotated images from our lifelogging dataset as test data (with 300
non-sensitive images, 53 images in sensitive places, and 252 with digital displays).
We see the supervised classifier has better prediction performance on finding
sensitive places (0.811) than keyword based classifiers (0.792), while the caption-
based technique classifier outperforms on predicting second type of sensitive
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Fig. 3: Precision-recall curves for retrieving sensitive images using CNNs (left)
and generated captions (right).

images (0.849 vs 0.657). In a real application, determining the type of private
image is likely less important than simply deciding if it is private. The bottom
table in Table 3 reflects this scenario, showing a confusion matrix which combines
the two sensitive types and focuses on whether photos are sensitive or not.

From another point of view, sensitive photo detection is a retrieval problem.
Figure 3 shows precision-recall curves for CNN and caption-based classifiers,
respectively. They show the trade-off between selecting accurate sensitive photos
(high precision) and obtaining a majority of all sensitive photos (high recall). For
example, by using CNN classifier, we can obtain 80% type 1 (sensitive place)
photos with accuracy around 58% (Figure 3(left) green curve); by using the
caption-based classifier, we can obtain 80% of type 2 (digital display) sensitive
photos with precision around 78% (Figure 3(right) blue curve).

The two approaches may also be complementary, since they use different
forms of evidence in making classification decisions, and users in a real application
could choose their own trade-off on how aggressively to filter lifelogging images.

6 Conclusion

In this paper, we have proposed the concept of using automatically-generated
captions to help organize and annotate lifelogging image collections. We have
proposed a deep learning-based captioning model that jointly labels photo streams
in order to take advantage of temporal consistency between photos. Our evaluation
suggests that modern automated captioning techniques could work well enough
to be used in practical lifelogging photo applications. We hope our research will
motivate further efforts of using lifelogging photos and descriptions together to
help human memory recall the activities and scenarios.
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