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Abstract

A major emerging challenge is how to protect people’s
privacy as cameras and computer vision are increasingly
integrated into our daily lives, including in smart devices
inside homes. A potential solution is to capture and record
just the minimum amount of information needed to perform
a task of interest. In this paper, we propose a fully-coupled
two-stream spatiotemporal architecture for reliable human
action recognition on extremely low resolution (e.g., 12×16
pixel) videos. We provide an efficient method to extract
spatial and temporal features and to aggregate them into
a robust feature representation for an entire action video
sequence. We also consider how to incorporate high res-
olution videos during training in order to build better low
resolution action recognition models. We evaluate on two
publicly-available datasets, showing significant improve-
ments over the state-of-the-art.

1. Introduction
Cameras are seemingly everywhere, from the traffic

cameras in cities and highways to the surveillance systems
in businesses and public places. Increasingly we allow cam-
eras even into the most private spaces in our lives: gaming
consoles like Microsoft Kinect [1] watch our living rooms,
“smart home” devices like Amazon Echo Look [2] and Nest
Cam [3] monitor our homes, “smart toys” like the Fisher-
Price Smart Toy Bear [4] entertain our children, “smart ap-
pliances” like the Samsung Family Hub [5] watch and re-
spond to our everyday actions, and cameras in mobile de-
vices like smartphones and tablets see us even in our bed-
rooms. While these cameras have the promise of making
our lives safer and simpler, including making possible more
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Figure 1. Sample frames of extremely low resolution (12 × 16
pixel) videos streams from the HMDB51 dataset. Original high
resolution frames are shown in red.

natural, context-aware interactions with technology, they
also record highly sensitive information about people and
their private environments.

To make matters worse, processing for many of today’s
devices is often performed by remote servers “in the cloud.”
This means that even if a user trusts that a device is using
recorded video solely for legitimate purposes (which is al-
ready a leap of faith, given cases of private data being used
for marketing and other unscrupulous purposes [32]), and
that the device has been adequately protected against hack-
ing (another leap of faith [7,17,39]), a user must also trust a



remote cloud provider and the interlying network that their
data must traverse. Even a secure and trusted cloud provider
may be forced to share data with a government by a court
order or intelligence agency request [30].

One way of addressing the privacy challenge is to trans-
mit just the minimum amount of information needed for a
computer vision task to be accurately performed. In the se-
curity community, solutions based on selective encryption
of image content [20] and firmware-enforced access con-
trol [25] have been proposed to keep video data safer from
hacks, but service providers must still be trusted with high-
fidelity video content. Another strategy is to remove private
details in imagery before they leave the device. While tech-
niques like selective image blurring [8], obscuring [34], and
various other transformations [19, 27, 33] have been stud-
ied [18], these all require accurately defining and detect-
ing private content, which is in itself a highly non-trivial
problem (and thus these techniques are often not effective
in practice [31]).

Perhaps the most effective approach is to simply avoid
collecting high-fidelity imagery to begin with. For exam-
ple, low resolution imagery may prevent specific details of
a scene from being identified – e.g. the appearance of partic-
ular people, or the identity of particular objects – while still
preserving enough information for a task like scene type
recognition [40]. Particularly important in many home ap-
plications of cameras is action and activity recognition, to
help give smart devices high-level contextual information
about what is going on in the environment and how to react
and interact accordingly. Several recent papers have shown
that very low resolution videos (around 16× 12 pixels) pre-
serve enough information for fine-grained action recogni-
tion [10, 12, 35, 36]. This is perhaps surprising, since even
a human observer may have difficulty identifying actions
from such little information (Figure 1). This raises the ques-
tion of how much better action recognition on low resolu-
tion frames can progress?

Existing work on low resolution action recognition tends
to focus on modeling the spatial (appearance) information
in each individual frame. For example, a common approach
is to use high resolution training videos to learn a trans-
formation between high and low resolution frames, to help
recover lost visual information [36]. This has been imple-
mented by either semi-coupled networks sharing convolu-
tional filters between high and low resolution inputs [10] or
Multi-Siamese networks learning inherent properties of low
resolution [35]. However, much (if not most) useful infor-
mation about action recognition in low resolution video is
in the motion information, not in any single frame.

In this paper, we propose a fully-coupled two-stream
spatiotemporal network architecture to better take advan-
tage of both local and global temporal features for action
recognition in low resolution video. Our architecture incor-

porates motion information at three levels: (1) a two-stream
network incorporates stacked optical flow images to cap-
ture subtle spatial changes in low resolution videos; (2) a
3D Convolution (C3D) network computes temporal features
within local video intervals; (3) a Recurrent Neural Net-
work (RNN) uses the extracted C3D features from videos
and optical flow fields to model more robust longer-range
features. Our experiments on two challenging datasets
(HMDB51 and DogCentric) show that our model signifi-
cantly outperforms the previous state-of-the-art.

2. Related Work
Most state-of-the-art techniques for action recognition

in video use deep learning methods. At a very high level,
there are two important types of evidence about action: ap-
pearance (spatial) features within individual frames, and
motion (temporal) features that cue on distinctive move-
ment patterns. Karpathy et al. [26] were among the first
to study deep learning-based action recognition, proposing
a multiresolution CNN architecture that operates on indi-
vidual frames without explicitly modeling temporal infor-
mation. Simonyan and Zisserman [38] used a two-stream
CNN framework to incorporate both feature types, with
one stream taking RGB image frames as input and the
other taking pre-computed stacked optical flows. The addi-
tional stream significantly improved action recognition ac-
curacy, indicating the importance of motion features. Tran
et al. [41] avoided the need for precomputing optical flow
features through their 3D convolution (C3D) framework,
which allows deep networks to learn temporal features in
an end-to-end manner.

Diba et al. [13] combined these two ideas into two-
stream C3D networks, and also proposed a more robust fu-
sion method for better temporal information encoding. Zhu
et al. [43] avoid pre-computing optical flow, instead learn-
ing the motion features in an end-to-end framework with
a hidden two-stream network. That approach is about ten
times faster than having to pre-compute optical flow, but
accuracy is somewhat weaker. Most of these papers capture
motion information over relatively short temporal intervals,
although several recent papers generate action proposals for
longer videos with a combination of C3D and Recurrent
Neural Networks (RNNs) [9, 14, 16].

Several papers have focused on recognition in extremely
low resolution (LR) imagery. This problem is considered
more difficult, of course, since there is simply less visual in-
formation available at low resolutions [44]. Wang et al. [42]
address low resolution object recognition by taking advan-
tage of high resolution training images to learn a transfor-
mation between the two resolutions. Dai et al. [12] adapted
this idea to action recognition in the video domain, specif-
ically focusing on extracting and learning better low reso-
lution features from limited information. Ryoo et al. [36]



Figure 2. Visualization of our spatiotemporal features extractor,
which uses a C3D network to capture spatial and temporal features
for video units and an RNN to encode motion information across
the entire video stream.

defined low resolution to be around 16 × 16 to 12 × 16
pixels and decomposed high resolution training videos into
multiple LR training videos by learning different resolution
transformations. Chen et al. [10] used two-stream semi-
coupled networks to design an end-to-end training network
on both visual and motion information. By observing that
two LR images taken from exactly the same scene can con-
tain totally different pixel values, recent follow-up work by
Ryoo et al. [35] achieved state-of-the-art LR action recog-
nition performance by learn an embedding representation
with Multi-Siamese networks.

We build on these previous methods that focus mostly on
modeling and encoding spatial features from low resolution
video frames, and propose an action recognition approach
that incorporates stronger motion information. In partic-
ular, our models captures motion information within dif-
ferent temporal neighborhoods, including both sequential
dependencies between consecutive frames and more global
temporal features. We find that this, combined with a fully-
coupled network that learns from high resolution training
videos, yields stronger models that significantly outperform
state-of-the-art methods.

3. Technical Approach

We now present our approach for action recognition on
extremely low resolution videos. Specifically, we first in-
troduce the basic architecture of our spatiotemporal feature
extractor, which uses a combination of 3D Convolutional
(C3D) Networks and Recurrent Neural Networks (RNNs).
Then, we discuss how to learn transferable features from

high to low resolution videos, which is based on the as-
sumption that high resolution training videos are available.
Finally, we explore four fusion methods to efficiently com-
bine visual and motion information during recognition.

3.1. Spatiotemporal Features Extractor

We assume we are given an input video sequence with
L frames that has captured a person or people performing a
single action (e.g., kicking a ball, shaking hands, chewing
food, etc.) and our goal is to recognize this action. Un-
like prior work that has viewed each frame as a separate
processing unit, we discretize the video into T = L/δ non-
overlapping video units V1, ...VT , each containing δ consec-
utive frames. Figure 2 illustrates the general architecture of
the extractor network.

Spatial Features Extractor. Motivated by Buch et al.’s
work [9] on high resolution video, we propose a feature ex-
tractor to characterize appearance information in low reso-
lution video units. In particular, we use the C3D network,
which has proven to be well-suited for modeling sequential
inputs such as videos [41]. Since C3D uses 3D convolution
and pooling operations that operate over both spatial and
temporal dimensions, it is able to capture motion informa-
tion within each input video unit. We successively feed each
video unit Vt to C3D, and extract its feature representation
xt from the last fully-connected layer.

Temporal Features Extractor. While the C3D network
is able to encode local temporal features within each video
unit, it cannot model across the multiple units of a video
sequence. We thus introduce a Recurrent Neural Network
(RNN) to capture global sequence dependencies of the in-
put video and cue on motion information (e.g., trajecto-
ries). Although Long Short-Term Memory (LSTM) [23]
networks are the most widely used RNNs in video appli-
cations, we found that Gated Recurrent Units (GRUs) [11]
performed better in our application. The basic mechanism
behind GRUs is similar to LSTMs, except that they do not
use memory units to control the information flow, and they
have fewer parameters which makes them slightly easier
and faster to use both in training and testing.

More formally, the GRU is trained to take the extracted
C3D features x1, x2, ..., xT and output a sequence of hidden
states h1, h2, · · · , hT , with learnable hidden layer parame-
ters W , U , and b. Then, the GRU cell iterates the following
operations for t ∈ [1, T ]:

zt = sigmoid(Wzxt + Uzht−1 + bz),

rt = sigmoid(Wrxt + Urht−1 + br),

nt = tanh(Whxt + Uh(rt ◦ ht−1) + bh), and
ht = zt ◦ ht−1 + (1− zt) ◦ nt,

(1)

where ◦ is the Hadamard product, and zt, rt, nt, and ht



Figure 3. Visualization of our fully-coupled two-stream spatiotemporal networks. We feed RGB frames into the spatial stream (green) and
corresponding stacked optical flow fields to the temporal stream (yellow). The GRU networks (blue) compute spatiotemporal information
for the entire video using the extracted C3D features as inputs. In training, both C3D and GRU are fully-coupled with convolution filters
shared between high and low resolution training videos, whereas only low resolution videos are used in testing.

are the reset, input, new gates, and hidden state for time t,
respectively.

The hidden state ht at each time t is a feature vector rep-
resenting encoded spatiotemporal information correspond-
ing to the first t video units, so hT incorporates features
of the entire video. We use hT as input to a fully-connected
layer with a softmax classifier to output the confidence score
of each action class. We call the spatiotemporal feature ex-
tractor the spatial stream of our two-stream networks.

3.2. Fully-coupled Networks

Low resolution recognition approaches in both image
and video domains have achieved better performance by
learning transferable features from high to low resolu-
tions. This process can be done either using unsupervised
pre-training on super resolution sub-networks [42] or with
partially-coupled networks [10,42] which are more flexible
for knowledge transformation. Inspired by these results, we
propose a fully-coupled network architecture where all pa-
rameters of both the C3D and GRU networks are shared be-
tween high and low resolutions in the (single) training stage.
The key idea is that by viewing high and low resolution
video frames as two different domains, the fully-coupled

network architecture is able to extract features across them.
Since high resolution video contains much more visual in-
formation, training on both resolutions helps improve learn-
ing spatial features; using high resolution in training can
be thought of as data augmentation, since different tech-
niques for sub-sampling produce different low resolution
examplars from the same original high resolution image.

3.3. Two-stream Networks

In this subsection, we extend our single-stream networks
to two-stream networks by adding a similar architecture but
with optical flow fields as the input. Since motion features
between consecutive low resolution video frames are often
quite small, our model benefits from optical flow images to
learn pixel-level correspondences of temporal features. We
call this module the temporal stream. Figure 3 shows the
main architecture of our two-stream networks.

In particular, we compute optical flow fields for both
high and low resolution videos, following Chen et al. [10]
and using the public MATLAB toolbox of Liu [29]. The
optical flows are encoded as 3-channel HSL images, where
hue and saturation are converted from optical flow vectors
(x- and y-components) into polar coordinates and lightness



is set to one. Before computing optical flow, we downsam-
ple the high resolution frames and upsample the low reso-
lution frames to a common size of 112× 112 pixels.

We also explore four widely used fusion methods, which
enable the model to leverage joint visual and motion in-
formation more effectively. Following the notational con-
vention of Feichtenhofer et al. [15], a fusion function f :
xat , xbt → yt fuses two feature maps xa

t ∈ RH×W×D

and xbt ∈ RH′×W ′×D′
, at state t, to output a map xbt ∈

RH′′×W ′′×D′′
, where W , H , and D denote the width,

height and number of channels, respectively. Different pa-
pers apply the fusion function to feature maps at different
points in a deep network, while our model only applies it to
the final hidden state hT . Since the hidden state of a GRU is
a D-dimensional vector, for simplicity, we drop the width,
height and t subscripts and assume that D = D′ = D′′.

We consider four different fusion techniques:

1. Sum Fusion, ysum = f sum(xa, xb), computes the sum
of two feature vectors over each channel d,

ysum
d = xad + xbd, (2)

where 1 < d < D and xa, xb, y ∈ RD. Sum fusion
is based on the assumption that dimensions of the two
output vectors of a two-stream network correspond to
one another.

2. Max fusion, ymax = fmax(xa, xb), computes the maxi-
mum of two feature vectors over each channel d,

ymax
d = max{xad, xbd}. (3)

In contrast to sum fusion, max fusion only keeps the
feature with the higher response, but again assumes
that corresponding dimensions are comparable.

3. Concatenation Fusion, ycat = f cat(xa, xb), stacks two
feature vectors along the channel dimension,

ycat
2d = xad and ycat

2d−1 = xbd, (4)

where y ∈ R2D. Instead of defining the correspon-
dence between two feature vectors by hand, concatena-
tion fusion leaves this to be learned by the subsequent
convolution layers.

4. Finally, Convolution Fusion, yconv = f conv(xa, xb), is
similar to concatenation fusion, but is convolved with
a learnable bank of filters f ∈ R2D×Do

and biases b ∈
RDo

are appended after the concatenation fusion,

yconv = ycat ∗ f + b, (5)

where ∗ denotes convolution and Do denotes the num-
ber of output channels. Filter f provides a flexible way

for the fusion method to measure the weighted combi-
nation of xa and xb, and is able to project the channel
dimension from 2D to Do. In order to permit a fair
comparison with other methods, we set Do = D and
Do = 2D in our experiments.

4. Experiments
We now evaluate and report results of each of the above

methods on our problem of action recognition in very low
resolution video sequences.

4.1. Datasets

We evaluated our proposed techniques on low resolution
versions of the HMDB51 [28] and DogCentric [24] bench-
marks, which are among the most widely used datasets
in action recognition at extremely low resolutions. The
HMDB51 (Human Motion Database) dataset consists of
7,000 video clips from a variety of sources ranging from
movies to YouTube videos, and is annotated with 51 ac-
tion classes such as eating, smiling, clapping, bike riding,
shaking hands, etc. Each clip is approximately 2-3 seconds
long and is recorded at 30 frames per second. We follow
prior work and report accuracies averaged over three splits
of training and testing data. The DogCentric dataset is col-
lected from wearable cameras mounted on dogs, and con-
sists of about 200 videos categorized into 10 different ac-
tions (which include activities performed by the dog itself
(e.g., drinking, walking, etc.) and interactions between the
dog and people. In contrast to HMDB51 which captures ac-
tions from a third-person perspective, these videos capture
actions of the camera wearer from a first-person viewpoint.

Low Resolution Videos. The above two datasets were
recorded at a resolution of 240×320 pixels. Since our C3D
network expects frames at a resolution of 112 × 112 pix-
els, we subsample the high resolution images (used only
during training) to this size. To generate low resolution
training and testing data, we resize the original videos to
12 × 16 using average downsampling, then upscale them
back to 112 × 112 resolution using bi-cubic interpolation.
We do not introduce any extra evidence into the interpola-
tion operation to ensure the 112× 112 videos have no more
information than the 12×16 videos. Figure 4 shows several
corresponding low and high resolution frames as examples.

4.2. Implementation Details

Our learning process consists of two stages: (1) training
the C3D network and extracting features for video units;
and (2) training our fully-coupled two-stream networks with
the concatenated C3D features of each video as inputs.

For the C3D networks, we followed Tran et al. [41] and
used their publicly available pre-trained model and fine-
tuned on the HMDB51 and DogCentric datasets in both
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Figure 4. Examples of video frames from the HMDB51 (left) and DogCentric (right) datasets. First row: high resolution images resized to
112×112 pixels; Second row: low resolution (12×16 pixel) images upsampled to 112×112 with bi-cubic interpolation; Third and fourth
rows: optical flow fields for high resolution and low resolution images, respectively, calculated from images rescaled to 112×112.

high and low resolution. Since we also extracted C3D fea-
tures for optical flow inputs, we fine-tuned another C3D
model with high and low resolution optical flows. The net-
work architecture had 8 convolution layers, 5 max-pooling
layers, and 2 fully-connected layers. The length of each
video unit was set to 16 frames. We used the output of the
first fully-connected layer fc6 (which had 4096 dimensions)
and stacked them together to form the video descriptor.

We implemented the fully-coupled two-stream networks
in PyTorch [6] and used the C3D features and optical flow
as inputs. As discussed before, we used mixed (high and
low resolution) data in the training stage, but no high resolu-
tion information is used in testing. We used the root-mean-
square propagation (RMSprop) [22] update rule to learn
the network parameters with fixed learning rate 10−3 and
weight decay 0.0005. The whole training process stopped
at 50 epochs, with the batch size set to 256. All our exper-
iments were conducted on a system with a Nvidia Titan X
Pascal graphics card.

4.3. Evaluation

Table 2 shows results of the evaluation. Our full model
featuring pre-trained C3D networks, the bi-directional GRU
network, and the fully-coupled two-stream architecture with
sum fusion achieves 44.96% accuracy on the low resolution
HMDB51 dataset and 73.19% on the low resolution Dog-
Centric dataset. Of course, these results are significantly
worse than the best results on the high resolution versions
of these datasets (e.g around 80.7% for HMDB51 [?]). (We
also tested our best model on action recognition on high
resolution videos, and easily achieved over 68% accuracy
without any explicitly tuning on network architecture and
hyperparameters.) However, as shown in Tables 2 and 3, our
results do beat all state-of-the-art approaches on low reso-
lution video, including Pooled Time Series (PoT) (which
uses a combination of HOG, HOF, CNN features) [37],
Inverse Super Resolution (ISR) [36], Semi-coupled Two-
stream Fusion ConvNets [10], and Multi-Siamese Embed-
ding CNNs [35]. Our best result outperforms these meth-
ods by 7.2% (3.3% without pre-training) on the HMDB51
dataset and 3.7% on the DogCentric dataset.



Network Architecture

Type C3D RNN Fusion Accuracy

Temporal Network
pre-trained w/o GRU Sum Fusion 21.24%
pre-trained uni-directional GRU Sum Fusion 24.11%

Spatial Network
pre-trained w/o GRU Sum Fusion 34.90%
pre-trained uni-directional GRU Sum Fusion 39.15%

Two-stream Network

pre-trained w/o GRU Sum Fusion 38.56%
pre-trained uni-directional GRU Sum Fusion 43.38%

w/o pre-trained bi-directional GRU Sum Fusion 41.04%
pre-trained bi-directional GRU Sum Fusion 44.96%
pre-trained bi-directional GRU Max Fusion 42.02%
pre-trained bi-directional GRU Concatenate Fusion 43.13%
pre-trained bi-directional GRU Convolution Fusion 43.46%

Table 1. Evaluation results of each component of our network architecture on the HMDB51 dataset.

Figure 5. Confusion matrix on the HMDB51 dataset using our best
model. The x-axis denotes the predicted labels and the y-axis rep-
resents the ground truth labels for 51 action classes.

To see how well our model performs on different cate-
gories, we also present a confusion matrix in Figure 5.

4.4. Discussion

To evaluate the contribution of each component of our
model, we also implemented multiple simpler baselines.

C3D Pre-training. To more fairly compare our model
with that of Chen et al. [10], we experimented with train-
ing the C3D networks from scratch on HMDB51, using the
same architecture and hyperparameters as the pre-trained
network. As shown in Tables 1 and 2, although the result

is about 3.9% worse without pre-training on the Sport-1M
dataset, our model still achieves state-of-the-arts results.

GRU Networks. To measure the contribution of the GRU
networks to our overall approach, we tried replacing them
with two fully-connected layers. To reduce the interfer-
ence from the two-stream networks, we also implemented
two one-stream networks each with the spatial and tempo-
ral features as inputs, and compared the results between the
ones with and without the GRU, respectively. The results
are presented in Table 1. It is clear that the models with
GRU outperform by about 4.5%. We also tested uni- and bi-
directional GRU architectures, and found that bi-directional
GRUs perform slightly better, as shown in Table 1.

Two-stream Networks. After evaluating the GRU net-
works, we now turn to the two-stream architecture, where
we believe that the pixel-level motion information acquired
from optical flow can improve the model’s ability in tem-
poral feature encoding. As shown in Table 1, it is clear
that the two-stream networks significantly outperform one-
stream networks with both spatial (4.2% better) and tempo-
ral features (19.2% better), respectively. We also assessed
the effect of our four different fusion methods: (1) sum fu-
sion, (2) max fusion, (3) concatenate fusion, and (4) convo-
lution fusion, as discussed in the previous section. The re-
sults summarized in Table 1 show that sum fusion achieves
the best performance.

5. Conclusion

We presented a new Convolutional Neural Network
framework for action recognition on extremely low reso-
lution videos. We achieved state-of-the-art results on the
HMDB51 and DogCentric datasets with a combination of
four important components: (1) a fully-coupled network ar-



Approach Accuracy

3-layer CNN [36] 20.81%
ResNet-31 [21] 22.37%
PoT (HOG + HOF + CNN) [37] 26.57%
ISR [36] 28.68%
Semi-coupled Two-stream ConvNets [10] 29.20%
Multi-Siamese Embedding CNN [35] 37.70%

Ours (w/o pre-trained C3D) 41.04%
Ours (w/ pre-trained C3D) 44.96%

Table 2. Performance of our model compared to the state-of-the-
art results on the HMDB51 dataset.

Approach Accuracy

PoT (HOG + HOF + CNN) [37] 64.60%
ISR [36] 67.36%
Multi-Siamese Embedding CNN [35] 69.43%

Ours (w/ pre-trained C3D) 73.19%

Table 3. Performance of our model compared to the state-of-the-
art results on the DogCentric dataset.

chitecture to leverage high resolution images in training in
order to learn a cross-domain transformation between low
and high resolution feature spaces; (2) 3D convolutional
components which extract compact and efficient spatiotem-
poral features for short video units; (3) a Recurrent Neural
Network (RNN) which considers long-range temporal mo-
tion information; and (4) two network streams having both
image frames and stacked dense optical flow fields as input,
in order to take into account detailed motion features be-
tween adjacent video frames. We hope this paper inspires
more work on extremely low resolution action recognition,
and in methods to learn spatial-temporal features through
sequential images more generally.
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