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Abstract—A key component of the human visual system is
our attentional control — the selection of which visual stimuli to
pay attention to at any moment in time. Understanding visual
attention in children could yield new insight into how the visual
system develops during formative years and how their visual
attention and selection play a role in development and learning.
We use head-mounted cameras to record first-person video from
interacting children and parents, giving a good approximation
of the contents of their visual fields of view, and collect gaze
direction data to record where they look within the visual field.
We data-mine this data to study the distributions of gaze patterns
within the first-person visual frame for both children and adults.
We also study the ability of visual saliency to predict visual
attention, as a function of the tasks, actions, and interactions
that the participants perform. We find significant differences in
the results between children and parents, indicating substantial
differences in how their bodily actions are coupled with their
visual attention between developing (child) and developed (adult)
visual systems.

I. INTRODUCTION

The visual world is cluttered with targets and distractions,
requiring us to select and stabilize attention on just a subset
of visual information in real time. For this reason, our visual
system actively searches for relevant information from our
environment on a moment-by-moment basis, by for example
generating 3 to 5 saccades per second [1]. Our attentional
control involves two inter-related modes: (1) a voluntary, goal-
directed mode, in which attention is guided by contextually ap-
propriate goals and intentions, and (2) an involuntary, stimulus-
driven mode, in which attention is captured by physically
salient stimuli. In addition, there is growing evidence that the
brain is optimized to learn perceptual stimuli that signal the
potential for procuring reward, exerting an additional influence
on attentional deployment [2], [3].

Work to understand visual attention has typically been
conducted in well-controlled experimental settings. With recent
advances in sensing and computing techniques, however, it
has become possible to use lightweight head-mounted cameras
to record visual information from a first person perspective,
and then to data mine this egocentric video data. The view
from a forehead-mounted camera close to the eyes roughly
approximates the visual field of a person. This new paradigm,
providing a personal view of the world, opens up unique
opportunities in understanding human vision systems [4], [5],
[6], as well as innovative consumer products like Google Glass.

But with these opportunities for egocentric views come
challenges, notably because first-person video is very dynamic
compared to video from a stationary camera. Since a first-
person camera is attached to the head, every head turn and
every change in body orientation causes global changes in the
first-person view. Some of these changes are task-relevant and
goal-directed, while others are spontaneous. From a computer
vision perspective, most existing algorithms for object recog-
nition and tracking assume cameras are stationary or have
a known, simple motion model. From a cognitive perspec-
tive, large and rapid head movements challenge attention by
changing the visual information available to the sensors and
by disrupting the alignment of body-centric spatial frames of
reference for directed action and for orientation.

Our aim in this paper is to understand visual selection
in freely moving toddlers, in tasks with changing goals,
competing visual targets, and dynamic visual information that
changes with the child’s own actions. These are challenging
conditions for both computer vision and human cognition, but
are the actual contexts in which toddlers learn in the real
world. We have three primary goals in this paper. First, we
study where children and adults look in their first person views
by analyzing eye gaze data synchronized with video from
head-mounted cameras. Second, to better understand visual
attention mechanisms, we use saliency maps to predict where
people look, studying the contexts in which saliency accurately
predicts gaze and those in which it does not. Third, we compare
these analyses of gaze distribution and the predictive power of
saliency between children and parents. To our knowledge, our
study represents the first attempts to computationally analyze
high-density eye gaze, head, and hand movement data with
children’s first-person video, and to document micro-level
behavioral patterns that link bodily actions and visual saliency
to gaze direction in first-person views.

II. RELATED WORK

Since Posner’s classic paper on attention as a spatial
spotlight [7], we have learned a great deal about the importance
of localized attention for selection [8]. Experiments show that
adults can readily attend to one specific location (and more
rapidly detect objects at that location) without moving the eyes
and while eye gaze is fixated elsewhere [9]. Thus spatial atten-
tion in adults can be internal, not requiring moving the sensors
toward the attended object. For example, Dorr et al [10]
study gaze patterns on various kinds of stimuli, including



static images and different types of videos like Hollywood and
natural films. They find significant differences in gaze patterns
between these stimuli, suggesting that human attention differs
significantly depending on context and stimuli type.

However, attention is also tied to the body: adults typ-
ically orient eye gaze to the attended location, while eye
movements [11], [12], head movements [13], and even hand
movements [14], [15] bias visual attention in the direction of
the movement. Visual attention thus appears to be coupled to
mechanisms of directional action, perhaps because we often
direct attention in preparation for action. Along these lines,
Tatler et al [16] demonstrate the limits of visual salience in
predicting eye gaze, finding that while bottom-up saliency
measures are highly predictive of gaze in static images, they
do not generalize well to naturalistic everyday contexts with
arbitrary viewing behavior. They suggest that models need
to consider other higher-level factors including learned prior
information about the environment, uncertainty in visual ob-
servations, and the specific task at hand. Indeed, using head-
mounted eye trackers became a recent trend in studying visual
attention of adults in the context of natural behaviors, which
has already led to important findings [17]. However, due to
technical limitations (like camera weight), there have been few
studies on tracking and recording first-person view video and
eye movements until recently [5], [6], [18]. The present study
represents our most recent efforts at the frontier of this new
venue by analyzing gaze data and visual saliency at the pixel
level from video data captured from first-person view cameras.

In parallel, computer vision researchers have begun to
consider first-person video streams, driven in part by emerging
consumer egocentric cameras like Memoto and Google Glass.
The rapid and unpredictable camera motion of head-mounted
cameras creates challenges compared to more traditional video
from stationary cameras. Recent work on egocentric video has
included video summarization [19], recognizing objects [20],
and inferring the user’s actions from object interaction [21] and
eye gaze [22]. While our paper is not about computer vision,
we believe that our studies of saliency, attention, and gaze
prediction in first-person video streams provide both empirical
evidence and useful insights on better models that may improve
these computer vision algorithms in the future.

III. METHODS

To realize our goal of understanding visual attention in
first-person views, we developed a system that captures a vari-
ety of video and sensing data from interacting participants in a
lab. We then use image processing algorithms to automatically
extract fine-grained coded data from these raw sensor feeds.

A. Multimodal sensing system

Our sensing environment monitors parents and children
engaged in free-playing interaction with several toy objects, as
shown in Figure 1. Using this environment, we measured the
moment-to-moment body positions of participants via head-
and hand-mounted sensors with a Polhemus 6 Degree-of-
Freedom (DOF) motion tracking system. In addition, we cap-
tured each participant’s visual field via tiny cameras on head-
mounted eye trackers. The angle of the camera is adjustable
and has a visual field of about 90◦ horizontally. Each eye

Fig. 1. Experimental setup. We use 4 cameras to record joint play between
child and parent: 2 head-mounted cameras (part of the eye-tracking system
worn by each participant) record data from the perspective of the participant,
an overhead camera sees the table and the hands of both the infant and parent,
and a scene camera records both people as if watched by an observer. High
temporal resolution (30Hz for first-person view and gaze tracking, 120Hz
for head and hand movements) allows detailed measurement of the temporal
dependencies within and between the sensorimotor systems of the participants.

tracker also monitored where a person is looking (the green
crosshairs in Figure 1), through an infrared camera pointing
at each participant’s left eye. (The validity of this method was
demonstrated in [6]). In addition to the two head-mounted eye
trackers (on the parent and the toddler), a third camera situated
over the table recorded a bird’s eye view of the interaction, and
a fourth camera viewed the whole scene from the side.

Using this experimental setup we collected data from 13
child-parent dyads (with a success rate in placing sensors on
children of over 70%). The mean age of toddlers is 13 months
with a standard deviation of 3.2 months. Parents were simply
told to engage the child with the toys and otherwise interact
as naturally as possible, leading to a free-flowing interaction
with no constraints on where parents or children should look,
or what they should do or say. Toddlers and parents typically
exchanged objects back and forth, engaged in joint actions with
the objects, took turns and shifted attention. There were two
interaction trials, each lasting about 2 minutes, in which the
participants were given different sets of three toy objects. A
typical study (including setup) lasted 10 to 15 minutes, from
which we collected about 15 gigabytes (GB) of data from each
dyad. Our analysis in this paper focuses on a subset of this
data: egocentric video, eye tracking, and body movements.

As one of the very first studies using head-mounted eye
tracking on toddlers, we note two limitations of the experimen-
tal setup. First, the human visual field is much broader (190◦

for adults) than the visual angle of the first-person view camera
(90◦). Nonetheless, as demonstrated by previous studies [17],
well-calibrated first-person video and eye movement data are
still reliable approximations of people’s visual fields and what
they attend to in the view. Second, the interaction environment
in our lab setting is much less cluttered than the real world,
since we cover the background with white curtains. We do this
to occlude task-irrelevant distractors so that participants focus
on free-play, attending solely to the toys and the other’s face
which are the regions-of-interest (ROIs) in the study.

B. Data Analysis

1) Video data processing: The recording rate for each of
the four cameras (overhead, side observer, and two head-
mounted cameras) is 30 frames per second with a spatial



resolution of 720 × 480 pixels. We conducted two forms of
image processing on the image frames of these videos:

1. Pixel-level visual saliency estimation. We used the seminal
saliency map model of Itti et al [23] to estimate which
areas of the image were most salient, according to motion,
intensity, orientation, and color cues. Itti’s saliency model
applies bottom-up attention mechanisms to topographically
encode conspicuity (or “saliency”) at every location in the
visual input. These analyses give a description of the first-
person view over time in terms of the visual properties that
might be relevant to stabilizing or shifting attention.

2. Object segmentation and recognition. We also extracted
visual information at a higher semantic level, in particular
estimating the locations of objects, hands, and faces from the
videos using the computer vision techniques detailed in prior
work [5], yielding the position of the specific objects in view.
This analysis also estimates relative object sizes (which vary as
objects are brought closer to the eyes). We then combined this
with momentary gaze data to detect which object was attended
to in the first person view. In addition, we manually annotated
object holding activities for both children and parents.

2) Motion data processing: Six motion tracking sensors
were placed on participants’ heads and hands to record 6
degree-of-freedom measurements (3 translational dimensions
plus 3 rotational dimensions) of their head and hand move-
ments at a frequency of 240 Hz. Our primary interest in
this paper is the overall dynamics of body movements. We
thus computed magnitude of positional changes (by computing
magnitudes of first derivatives along the translational dimen-
sions) and orientation change (along the rotational dimen-
sions). We found that head position movements are equally
frequent in children and parents, but that children rotate their
heads much more frequently than adults do.

IV. EXPERIMENTAL RESULTS

Having described our experimental setup and data analysis
methods, we now turn to reporting our results. Our experiments
had two main goals: (1) to characterize where people look
within their first person view, (2) to study the connection
between visual saliency and eye gaze (attention) in first-person
views. We study these goals in both children and parents, and
under a variety of contexts and conditions.

A. Eye gaze distributions

Eyes and head movements are known to be well coordi-
nated because people tend to adjust their head orientation to
point in the same direction as eye gaze [24]. However, few
studies investigate gaze direction in egocentric views in the
context of natural behaviors (but also see [6]). As one of
the first experiments to record gaze data from head-mounted
eye trackers in free-flowing interaction, we first report where
children and parents look within the first person views.

Figure 2(a) visualizes these results using heatmaps of
gaze distribution in the first-person view for both parents and
children (generated using the technique of [25] with smoothing
parameter λ = 50). Even with 13 dyads, the high-density
measurements in our experiments provide tens to hundreds
of thousands of gaze observations (indicated by N in Fig 2).

As expected, gaze is most often in the center of the visual
field for both children (µ = (340, 231) where the center of
the visual field is (360, 240) in our coordinate system) and
parents (µ = (361, 224)). Even though this is not surprising,
the quantitative results reported here are still informative to
applications. For example, if we know when gaze is likely to be
centered in the first person view, we can better build computer
vision systems to estimate visual attention from egocentric
views, and better understand human eye-head coordination.
More interesting, however, is that toddler gaze is more spread
out around the center of the visual fields (σx = 86, σy = 65,
where σx is the horizontal standard deviation of gaze points
and σy is the vertical standard deviation), whereas parent
gaze was much more compact (σx = 53, σy = 60). This
suggests that adults’ developed visual systems are better able
to coordinate eye and head movements than toddlers, whose
visual systems are still developing.

Two primary behavioral activities may jointly cause both
the dynamics of the first-person view and the visual attention
switches in the first person view. Head turns change what a
person sees; when one turns his head without a gaze shift,
he sees a new spatial location even though the eye-in-head
position has not changed. In contrast, if one wants to fixate on
the same spatial location in the world, then one has to adjust
gaze direction to compensate for the head turn. Second, manual
manipulation of objects may bring objects closer to or further
away from the eyes. Even given a stable visual field (with
stationary head position), these manual activities dramatically
change what one sees as well as what one attends to. Given
these observations, we next calculated heatmaps for a subset
of video frames in several specific contexts: whether or not the
head was moving, whether the person was looking at an object
or a face, and whether the person was holding an object.

Head motions. Figure 2(b) splits the heatmaps from Fig-
ure 2(a) into the moments when the head was stationary versus
when it was moving. The results show that for both children
and parents, eyes and head are more well-coordinated when
the head is stable. Moreover, gaze-in-head direction in parents
is more clustered around a central location and that location is
slightly above the center of the visual field (at (374, 210) when
stationary, compared to the true center point of (360, 240)).
For children, gaze-in-head direction when the head is stable
is closer to the center of the visual field (335, 226) and more
spread out (σx = 84, σy = 63 for children vs. σx = 47,
σy = 56 for parents). In addition, the heatmaps with head
motion have greater vertical variance for both children and
parents, suggesting that head turns from side to side may not
be accompanied by gaze shifts and that participants turned
their head to change what they attended. Meanwhile, head
tilts upward and downward were likely accompanied with
eye movements, suggesting that participants switched their
attention through both head and eye movements.

Holding activities. We next examined two specific contexts
involving holding objects: (1) video frames in which the
individual was not holding an object, and (2) video frames
in which the individual was holding an object for a sustained
period of time (operationally defined as between 2 and 8
seconds). Heatmaps of eye-head alignment for these two cases
are shown in Figure 2(c). When not holding, gaze data are
somewhat spread out around the center in both child and
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Fig. 2. Heat maps showing spatial distributions of eye gaze within first-person images, for toddlers (top) and parents (bottom), in different contexts: (a) overall
across all video frames, (b) when head is moving and stationary, (c) when individuals are not holding an object or holding it for a sustained period of time (2
to 8 seconds), (d) when gaze is on an object or a face. Also shown are robust (60% trimmed) estimates of mean and variance (in horizontal (x) and vertical (y)
directions) of the gaze distributions and number of gaze data points used to generated heatmaps. (Off-diagonal covariances not shown.) Maps are 720×480.

parent views. In contrast, sustained holding created moments
in which eyes are more likely to fix on a certain area in view.
In summary, holding actions (especially with a certain period
of time) stabilize visual attention toward the center of the
visual field. More generally, holding objects may also provide
a solution via the coupling of head, hand and eye so as to
create a stabilized visual field without head movements.

Gazing at objects and faces. We next calculated and compared
heatmaps at the moments when individuals were looking at
objects with those moments when they were looking at the
other person’s face. As shown in Figure 2(d), when looking
at the partner’s face, both child and parent gazed in an upper
area in their first person view (µ = (376, 173) for children and
µ = (354, 186), where (360, 240) is the true frame center),
indicating that they looked up toward the other’s face without
completely orienting their head toward the face. This is likely
caused by brief glances at the other’s face, without moving the
head, prior to immediately returning attention back to objects.

Figure 2(d) also presents the gaze distributions when look-
ing at objects, showing an overall similar pattern with gaze
distributed around the center of the visual field. Since a parent’s
view is much broader (see Figure 1), we can roughly define
three workspaces in her view based on distance from her body:
(1) a personal workspace for herself when she manipulates an
object close to her body, (2) a workspace for the child when the
child manipulates an object close to his body, and (3) a joint
workspace midway between child and parent. Based on this
definition, the parent’s first-person view will typically include
the personal workspace at the bottom, the joint workspace in
the middle of the frame, and the child’s workspace at the top.
The parent gaze distribution has a vertical-shaped ellipsoid
shape, suggesting that her attention is allocated (and potentially
switches frequently) between all three spaces. This is likely
caused by parents paying attention to both objects in their own
hands as well as monitoring the objects in a child’s hands.

In contrast, the child gaze heatmap is more spread out
(σx = 84, σy = 60 vs. σx = 56, σy = 59 for parents),
potentially because their eye-hand coordination is not fully
developed. Further, because the child is shorter, the child’s
view is narrower than the parent’s view, suggesting that they

cannot switch between the workspaces without head turns,
yielding a more centered heatmap. There are two possible
explanations for this observation: (1) they might primarily
focus on one workspace (presumably their own) when ma-
nipulating objects; or (2) they might switch their attention
equally frequently among three workspaces as the parents did,
but accomplishing this by moving their head and eyes together.
Combining these observations with the results from the child’s
face gaze heatmap, brief face glances do not require a head turn
to completely orient the head toward the face, while attention
on objects held by the parent may be longer and require both
eye and head movements. Meanwhile, parents switch their
attention frequently between the child’s face, objects in her
own hand and objects in the child’s hands, and some of these
attention shifts may be executed without head turns.

B. Visual saliency

Our next goal was to measure the saliency of the visual
environment from the perspective of children and adults, and
then to connect gaze and attention shifts to properties of the
momentary first-person salience map. Toward these goals, we
employed the saliency algorithm of Itti et al [23], which is a
biologically-motivated model that estimates a two-dimensional
map of the saliency of objects in the visual environment,
purely based on the properties of the visual stimulus. Briefly
summarized, the model extracts low level vision features (we
use motion, intensity and orientation) from a color video frame
at several spatial scales (using Gaussian pyramids consisting
of progressive low-pass filtering and sub-sampling of the input
image). Next, each feature is computed in a center-surround
structure akin to visual receptive fields, implemented as dif-
ferences between a fine and a coarse scale for each feature.
Finally, the visual input in the original image is represented
in the form of iconic (appearance-based) topographic feature
maps in which each pixel includes an estimate of its saliency.

It is important to note that while this saliency algorithm
is known to have some cognitive validity, we do not assume
that it is a perfect cognitive model. Rather, we employ this
algorithm to automatically produce reasonable saliency maps,
which we use to measure properties of momentary first-
person views to measure how well they correlate with where



(a) (b) (c)
Fig. 3. ROC-like performance curves showing accuracy of saliency maps in predicting gaze location in first-person views. (a) Overall curves for children and
adults on all image frames. (b) and (c): Curves on subsets of frames with different types of head motion, for (b) children and (c) parents.

Child Parent

Fig. 4. Histograms of visual saliency in first person views, for children
(left column) and parents (right column). Top row: Overall average saliency
histograms, showing that distribution of saliency is about the same for the
children and parents. Bottom row: Average saliency in a local neighborhood
around the individual’s gaze, showing that saliency is much more predictive
of adult eye gaze position. We also show a few sample frames overlaid with
saliency heat maps, and indicate which histogram bin each frame would be
counted in. In the bottom row, two frames included in each plot show two
representative cases, one in which the person looked at a high-saliency area,
and the other in which the participant attended to a low-saliency area.

people look. In limited experimentation with other saliency
algorithms including the technique of Harel et al [26], we
found relatively stable results; we leave detailed comparison
of saliency algorithms in first-person views to future work.

Saliency in first-person views. We generated saliency maps for
a total of 296,000 frames (148,000 frames each from parent
and child head cameras). An initial question is how the overall
saliency of a child’s view compares to that of a parent’s view.
The top row of Figure 4 show the distributions based on mean
saliency values aggregated across all the pixels in each image
frame, indicating no significant difference in overall visual
saliency in child and parent views. Next, we took the tracked
gaze location in each image and created a spotlight circle with
a radius of 15 pixels, and calculated the mean saliency value
in this local patch around each gaze point. The bottom row
of Figure 4 shows that saliency values around gaze locations
are significantly different between child and parent: (1) there
is a larger proportion of image frames in which gaze locations
are not salient at all in the child’s view compared with parents
view (child 12% vs. parent 3%), and (2) a large proportion of

image frames in the parent’s view has saliency value around
0.3 while saliency values around the child’s gaze are skewed
lower. This indicates that saliency may be less correlated with
where children looked compared with where parents looked.

Even though our saliency model is limited to be a bottom-
up approach without any top-down volitional component, our
application of saliency in first person views is unique because
it captures dynamic head-camera images that change rapidly
due to head and body movements. Compared with saliency
maps generated from static images, saliency maps of dynamic
first-person views are partially created by head and hand
movements. Therefore they reflect not only bottom-up saliency
in visual stimuli but are also influenced by top-down bodily
actions. This top-down ingredient extends the conventional
definition of saliency maps and may make first-person view
saliency a predictive factor of where people look. Given this
view, we next attempt to use saliency maps to predict gaze.

Predicting gaze with saliency. Saliency algorithms are typ-
ically evaluated by asking a participant to look at a static
image (like a photo) and then recording the series of locations
at which the participant fixated over time [26]. By counting
these fixations as positives and all other locations as negatives,
thresholding the saliency map yields some fraction of positive
locations that are correctly labeled (true positive rate) and
some fraction of negative locations that are incorrectly labeled
positive (false positive rate). Varying over multiple thresholds
yields an ROC curve for the performance of the algorithm.

We are interested in a very different context, in which we
estimate the saliency of a frame from first-person video data
and then decide where a person is likely to gaze. Posing this as
a classification task is complicated by the fact that every frame
has at most one true positive or one false negative location
because one either predicts the gaze location or one does not.
To overcome this problem, we defined a pseudo-ROC curve
for video data where we computed the fraction of frames in
which gaze was correctly predicted over the number of all
frames, instead of a true positive rate. Similarly, instead of a
false positive rate, we computed the fraction of salient pixels
over all pixels in the image, taking the average over all frames.

Figure 3(a) shows these pseudo-ROC curves, indicating
that saliency is significantly better at predicting gaze for
parents than for children. For example, at a threshold at which
40% of pixels are marked as candidate gaze positions, there is
about a 70% chance that the true gaze is marked as a candidate
for the toddler versus a nearly 85% chance for the adult.
To understand this result better, we subdivided video frames



into four general classes: (1) head position is stationary, (2)
head is rotating, (3) head is translating, and (4) head is both
rotating and translating. Figures 3(b) and (c) show the curves
for children and parents, respectively, in these cases. The child
results show that saliency predicts gaze direction better when
the head is not moving or is only translating. For adults,
the performance across different head motions is similar,
but again saliency is more predictive during translation than
rotation. Taken together with the results from eye-head-hand
coordination above that showed a closer coupling in children
than in parents, these results indicate that the saliency model
has limited success in capturing the influence of bodily actions
on visual attention, which seems necessary to build better
models of egocentric view saliency, especially for children.

V. DISCUSSION AND CONCLUSION

Our study focuses on understanding the sensory-motor
dynamics of visual attention in active task contexts using head-
mounted eye tracking. As one of the first studies on tracking
toddler eye movements in the real world, we document the role
of eye, head, and hand actions in the selection and stabilization
of visual attention on objects. Compared to adults, toddlers
move a lot when they are interacting with objects. These large
movements present toddlers with new attentional challenges
relative to their less active infant selves. However, our results
show that young children’s attentional systems are more tied to
bodily action compared with adults, and suggest that manual
action (holding objects) may also provide a solution to stabilize
attention on one object via the coupling of head, hand and
eye. We found that head turns also play an important role in
stabilizing attention. Early in human development, attention is
deeply linked to whole body movements, which create large
changes in the relative salience of different components of the
scene. To quantify the link between visual saliency and gaze
in first-person views, we applied a well-established saliency
algorithm to egocentric video and found it is more predictive
when the head is stationary. Since the head moves a lot in free-
flowing interaction, the predictive ability of saliency is above
chance but far from perfect, which is not surprising given that
most saliency models are designed for stationary tasks such as
picture viewing [16]. Nonetheless, this observation poses a new
challenge to build saliency algorithms for egocentric views,
and our quantitative results on eye, head and hand coordination
provide useful empirical patterns toward this goal.

In summary, we have presented a first step towards under-
standing visual attention of toddlers in naturalistic tasks using
head-mounted eye and motion tracking. Our results suggest
that for toddlers, effective visual attention requires stabilizing
the head and aligning the head and eyes, behaviors fostered
by actions such as reaching for and holding objects. The
conjecture is that these bodily alignments also align the internal
spatial representations of the attended location, stabilizing
visual attention and making that attention more effective for
development and learning. In future work, this finding may
also help build models of visual attention in egocentric views.
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