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Abstract— Predicting the future location of vehicles is es-
sential for safety-critical applications such as advanced driver
assistance systems (ADAS) and autonomous driving. This paper
introduces a novel approach to simultaneously predict both
the location and scale of target vehicles in the first-person
(egocentric) view of an ego-vehicle. We present a multi-stream
recurrent neural network (RNN) encoder-decoder model that
separately captures both object location and scale and pixel-
level observations for future vehicle localization. We show that
incorporating dense optical flow improves prediction results
significantly since it captures information about motion as well
as appearance change. We also find that explicitly modeling fu-
ture motion of the ego-vehicle improves the prediction accuracy,
which could be especially beneficial in intelligent and automated
vehicles that have motion planning capability. To evaluate the
performance of our approach, we present a new dataset of
first-person videos collected from a variety of scenarios at
road intersections, which are particularly challenging moments
for prediction because vehicle trajectories are diverse and
dynamic. Code and dataset have been made available at: https:
//usa.honda-ri.com/hevi

I. INTRODUCTION

Safe driving requires not just accurately identifying and
locating nearby objects, but also predicting their future
locations and actions so that there is enough time to avoid
collisions. Precise prediction of nearby vehicles’ future lo-
cations is thus essential for both autonomous and semi-
autonomous (e.g., Advanced Driver Assistance Systems, or
ADAS) driving systems as well as safety-related systems [1].
Extensive research [2]–[4] has been conducted on predict-
ing vehicles’ future actions and trajectories using overhead
(bird’s eye view) observations. But obtaining overhead views
requires either an externally-mounted camera (or LiDAR),
which is not common on today’s production vehicles, or
aerial imagery that must be transfered to the vehicle over
a network connection.

A much more natural approach is to use forward-facing
cameras that record the driver’s “first-person” or “egocentric”
perspective. In addition to being easier to collect, the first-
person perspective captures rich information about the object
appearance, as well as the relationships and interactions
between the ego-vehicle and objects in the environment. Due
to these advantages, egocentric videos have been directly
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Fig. 1: Illustration of future vehicle localization. Location
and scale are represented as bounding boxes in predictions.

used in applications such as action recognition [5], [6],
navigation [7]–[9], and end-to-end autonomous driving [10].
For trajectory prediction, some work has simulated bird’s
eye views by projecting egocentric video frames onto the
ground plane [2], [3], but these projections can be incorrect
due to road irregularities or other sources of distortion, which
prevent accurate vehicle position prediction.

This paper considers the challenging problem of predicting
relative future locations and scales (represented as bounding
boxes in Figure 1) of nearby vehicles with respect to an ego-
vehicle equipped with an egocentric camera. We introduce
a multi-stream RNN encoder-decoder (RNN-ED) architec-
ture to effectively encode past observations from different
domains and generate future bounding boxes. Unlike other
work that has addressed prediction in simple scenarios such
as freeways [2], [3], we consider urban driving scenarios
with a variety of multi-vehicle behaviors and interactions.

The contributions of this paper are three-fold. First, our
work present a novel perspective for intelligent driving
systems to predict vehicle’s future location under egocentric
view and challenging driving scenarios such as intersections.
Second, we propose a multi-stream RNN-ED architecture for
improved temporal modeling and explicitly capturing vehi-
cles’ motion as well as their appearance information by using
dense optical flow and future ego-motion as inputs. Third,
we publish a new first-person video dataset — the Honda
Egocentric View - Intersection (HEV-I) dataset — collected
in a variety of scenarios involving road intersections. The
dataset includes over 2, 400 vehicles (after filtering) in 230
videos. We evaluate our approach on this new proposed
dataset, along with the existing KITTI dataset, and achieve
the state-of-the-art results.



II. RELATED WORK

Egocentric Vision. An egocentric camera view is often
the most natural perspective for observing an ego-vehicle
environment, but it introduces additional challenges due to
its narrow field of view. The literature in egocentric visual
perception has typically focused on activity recognition [5],
[6], [11]–[13], object detection [14]–[16], person identifica-
tion [17]–[19], video summarization [20], and gaze antici-
pation [21]. Recently, papers have also applied egocentric
vision to ego-action estimation and prediction. For example,
Park et al. [22] proposed a method to estimate the location
of a camera wearer in future video frames. Su et al. [23]
introduced a Siamese network to predict future behaviors
of basketball players in multiple synchronized first-person
views. Bertasius et al. [24] addressed the motion planning
problem for generating an egocentric basketball motion se-
quence in the form of a 12-d camera configuration trajectory.

More directly related to our problem, two recent papers
have considered predicting pedestrians’ future locations from
egocentric views. Bhattacharyya et al. [25] model observa-
tion uncertainty using Bayesian Long Short-Term Memory
(LSTM) networks to predict the distribution of possible
future locations. Their technique does not try incorporate
image features such as object appearance. Yagi et al. [26] use
human pose, scale, and ego-motion as cues in a convolution-
deconvolution (Conv1D) framework to predict future loca-
tions. The specific pose information applies to people but not
to other on-road objects like vehicles. Their Conv1D model
captures important features of the activity sequences but does
not explicitly model temporal updating along each trajectory.
In contrast, our paper proposes a multi-stream RNN-ED
architecture using past vehicle locations and image features
as inputs for predicting vehicle locations from egocentric
view.

Trajectory Prediction. Previous work on vehicle trajec-
tory prediction has used motion features and probabilistic
models [2], [27]. The probability of specific motions (e.g.,
lane change) is first estimated, and the future trajectory is
predicted using Kalman filtering. Computer vision and deep
learning techniques achieved convincing results in several
fields [28]–[30], and have been recently investigated for
trajectory prediction. Alahi et al. [31] proposed Social-LSTM
to model pedestrian trajectories as well as their interactions.
The proposed social pooling method was then improved by
Gupta et al. [32] to capture global context for a Generative
Adversarial Network (GAN). Social pooling is first applied
to vehicle trajectory prediction in Deo et al. [3] with multi-
modal maneuver conditions. Other work models scene con-
text information using attention mechanisms to assist tra-
jectory prediction [33], [34]. Lee et al. [4] incorporate RNN
models with conditional variational autoencoders to generate
multimodal predictions, and select the best prediction by
ranking scores.

However, these methods model trajectories and context
information from a bird’s eye view in a static camera setting,

which significantly simplifies the challenge of measuring
distance from visual features. In contrast, in monocular
first-person views, physical distance can be estimated only
indirectly, through scaling and observations of participant
vehicles, and the environment changes dynamically due to
ego-motion effects. Consequently, previous work cannot be
directly applied to first-person videos. On the other hand, the
first-person view provides higher quality object appearance
information compared to birds eye view images, in which
objects are represented only by the coordinates of their geo-
metric centers. This paper encodes past location, scale, and
corresponding optical flow fields of target vehicles to predict
their future locations, and we further improve prediction
performance by incorporating future ego-motion.

III. FUTURE VEHICLE LOCALIZATION FROM
FIRST-PERSON VIEWS

We now present our approach to predicting future bound-
ing boxes of vehicles in first-person view. Our method differs
from traditional trajectory prediction because the distances
of object motion in perspective images do not correspond
to physical distances directly, and because the motion of the
camera (ego-motion) induces additional apparent motion on
nearby objects.

Consider a vehicle visible in the egocentric field of
view, and let its past bounding box trajectory be X =
{Xt0−τ+1, Xt0−τ+2, ..., Xt0}, where Xt = [cxt , c

y
t , wt, ht] is

the bounding box of the vehicle at time t (i.e., its center
location and width and height in pixels, respectively). Simi-
larly, let the future bounding box trajectory be given by Y =
{Yt0+1, Yt0+2, ..., Yt0+δ}. Given image evidence observed
from the past τ frames, O = {Ot0−τ+1, Ot0−τ+2, ..., Ot0},
and its corresponding past bounding box trajectory X, our
goal is to predict Y.

We propose a multi-stream RNN encoder-decoder (RNN-
ED) model to encode temporal information of past obser-
vations and decode future bounding boxes, as shown in
Figure 2. The past bounding box trajectory is encoded to pro-
vide location and scale information, while dense optical flow
is encoded to provide pixel-level information about vehicle
scale, motion, and appearance changes. Our decoder can also
consider information about future ego-motion, which could
be available from the planner of an intelligent vehicle. The
decoder generates hypothesized future bounding boxes by
temporally updating from the encoded hidden state.

A. Temporal Modeling

1) Location-Scale Encoding: One straightforward ap-
proach to predict the future location of an object is to
extrapolate a future trajectory from the past. However, in
perspective images, physical object location is reflected by
both its pixel location and scale. For example, a vehicle
located at the center of an image could be a nearby lead
vehicle or a distant vehicle across the intersection, and such a
difference could cause a completely different future motion.
Therefore, this paper predicts both the location and scale
of participant vehicles, i.e., their bounding boxes. The scale



Fig. 2: The proposed future vehicle localization framework (better in color).

information is also able to represent depth (distance) as well
as vehicle orientation, given that distant vehicles tend to have
smaller bounding boxes and crossing vehicles tend to have
larger aspect ratios.

2) Motion-Appearance Encoding: Another important cue
for predicting a vehicle’s future location is pixel-level infor-
mation about motion and appearance. Optical flow is widely
used as a pattern of relative motion in a scene. For each
feature point, optical flow gives an estimate of a vector [u, v]
that describes its relative motion from one frame to the next
caused by the motion of the object and the camera. Compared
to sparse optical flow obtained from traditional methods such
as Lucas-Kanade [35], dense optical flow offers an estimate
at every pixel, so that moving objects can be distinguished
from the background. Also, dense optical flow captures
object appearance changes, since different object pixels may
have different flows, as shown in the left part of Fig. 2.

In this paper, object vehicle features are extracted by
a region-of-interest pooling (ROIPooling) operation using
bilinear interpolation from the optical flow map. The ROI
region is expanded from the bounding box to contain con-
textual information around the object, so that its relative
motion with respect to the environment is also encoded.
The resulting relative motion vector is represented as Ot =
[u1, v1, u2, v2, ...un, vn]t, where n is the size of the pooled
region.

We use two encoders for temporal modeling of each input
stream and apply the late fusion method:

hXt = GRU
X
(φ

X
(Xt−1), h

X
t−1; θX ) (1a)

hOt = GRU
O
(φ

O
(Ot−1), h

O
t−1; θO ) (1b)

H = φH(Average(h
X
t0 , h

O
t0)) (1c)

where GRU represents the gated recurrent units [36] with
parameter θ, φ(·) are linear projections with ReLU activa-
tions, and hxt and hot are the hidden state vectors of the GRU
models at time t.

B. Future Ego-Motion Cue

Awareness of future ego-motion is essential to predicting
the future location of participant vehicles. For autonomous
vehicles, it is reasonable to assume that motion planning (e.g.
trajectory generation) is available [37], so that the future

pose of the ego vehicle can be used to aid in predicting
the relative position of nearby vehicles. Planned ego-vehicle
motion information may also help anticipate motion caused
by interactions between vehicles: the ego-vehicle turning left
at intersection may result in other vehicles stopping to yield
or accelerating to pass, for example.

In this paper, the future ego motion is represented by
2D rotation matrices Rt+1

t ∈ R2×2 and translation vectors
T t+1
t ∈ R2 [26], which together describe the transformation

of the camera coordinate frame from time t to t + 1. The
relative, pairwise transformations between frames can be
composed to estimate transformations across the prediction
horizon from the current frame:

Rt0+it0 =

t0+i−1∏
t=t0

Rt+1
t (2a)

T t0+it0 = T t0+i−1t0 +Rt0+i−1t0 T t0+it0+i−1 (2b)

The future ego-motion feature is represented by a vector
Et = [ψtt0 , x

t
t0 , z

t
t0 ], where t > t0, ψtt0 is the yaw angle

extracted from Rtt0 , and xtt0 and ztt0 are translations from
the coordinate frame at time t0. We use a right-handed
coordinate fixed to ego vehicle, where vehicle heading aligns
with positive x. Estimated future motion is then used as input
to the trajectory decoding model.

C. Future Location-Scale Decoding
We use another GRU for decoding future bounding boxes.

The decoder hidden state is initialized from the final fused
hidden state of the past bounding box encoder and the optical
flow encoder:

hYt+1 = GRU
Y
(f(hYt , Et), h

Y
t ; θY ) (3a)

Yt0+i −Xt0 = φout(h
Y
t0+i) (3b)

f(hYt , Et) = Average(φ
Y
(hYt ), φe(Et)) (3c)

where hYt is the decoder’s hidden state, hYt0 = H is the initial
hidden state of the decoder, and φ(·) are linear projections
with ReLU activations applied for domain transfer. Instead
of directly generating the future bounding boxes Y, our RNN
decoder generates the relative location and scale of the future
bounding box from the current frame as in (3b), similar to
[26]. In this way, the model output is shifted to have zero
initial, which improves the performance.



(a) Tracklet length [# of frames] (b) Ego-vehicle yaw angle

(c) Training set trajectory length [# of pixels] (d) Testing set trajectory length [# of pixels]

Fig. 3: HEV-I dataset statistics.

IV. EXPERIMENTS

A. Dataset

The problem of future vehicle localization in egocentric
cameras is particularly challenging when multiple vehicles
execute different motions (e.g. ego-vehicle is turning left but
yields to another moving car). However, to the best of our
knowledge, most existing autonomous driving datasets are
proposed for scene understanding tasks [38], [39] that do
not contain much diverse motion. This paper introduces a
new egocentric vision dataset, the Honda Egocentric View-
Intersection (HEV-I) data, that focuses on intersection sce-
narios where vehicles exhibit diverse motions due to complex
road layouts and vehicle interactions. HEV-I was collected
from different intersection types in the San Francisco Bay
Area, and consists of 230 videos each ranging between 10
to 60 seconds. Videos were captured by an RGB camera
mounted on the windshield of the car, with 1920 × 1200
resolution (reduced to 1280×640 in this paper) at 10 frames
per second (fps).

TABLE I: Comparison with KITTI dataset. The number of
vehicles is tallied after filtering out short sequences.

Dataset # videos # vehicles scene types

KITTI 38 541 residential, highway, city road
HEV-I 230 2477 urban intersections

Following prior work [26], we first detected vehicles by
using Mask-RCNN [28] pre-trained on the COCO dataset.
We then used Sort [40] with a Kalman filter for multiple
object tracking over each video. In first-person videos, the
duration of vehicles can be extremely short due to high
relative motion and limited fields of view. On the other hand,
vehicles at stop signs or traffic lights do not move at all
over a short period. In our dataset, we found a sample of
2 seconds length is reasonable for including many vehicles
while maintaining reasonable travel lengths. We use the past
1 second of observation data as input to predict the bounding
boxes of vehicles for the next 1 second. We randomly split

TABLE II: Quantitative results of proposed methods and
baselines on HEV-I dataset with metrics FDE/ADE/FIOU.

Models Easy Cases Challenging Cases All Cases

Linear 31.49 / 17.04 / 0.68 107.93 / 56.29 / 0.33 72.37 / 38.04 / 0.50

ConstAccel 20.82 / 13.86 / 0.74 90.33 / 49.06 / 0.35 58.00 / 28.05 / 0.53

Conv1D [26] 18.84 / 12.09 / 0.75 37.95 / 20.97 / 0.64 29.06 / 16.84 / 0.69

RNN-ED-X 23.57 / 11.96 / 0.74 43.15 / 22.24 / 0.60 34.04 / 17.46 / 0.67

RNN-ED-XE 22.28 / 11.60 / 0.74 42.27 / 22.39 / 0.61 32.97 / 17.37 / 0.67

RNN-ED-XO 17.45 / 8.68 / 0.78 32.61 / 16.72 / 0.66 25.56 / 12.98 / 0.72

RNN-ED-XOE 16.72 / 8.52 / 0.80 32.05 / 16.63 / 0.66 24.92 / 12.86 / 0.73

TABLE III: Quantitative results on KITTI dataset. We com-
pare our best model with baselines for simplicity.

Models FDE ADE FIOU

Linear 78.19 38.21 0.33

ConstAccel 55.66 25.78 0.39

Conv1D [26] 44.13 24.38 0.49

Ours 37.11 17.88 0.53

the training (70%) and testing (30%) videos, resulting in
∼ 40, 000 training and ∼ 17, 000 testing samples.

Statistics of HEV-I are shown in Fig. 3. As shown, most
vehicle tracklets are short in Fig. 3 (a) because vehicles
usually drive fast and thus leave the field of the first-person
view quickly. Fig. 3 (b) shows the distribution of ego vehicle
yaw angle (in rad) across all videos, where positive indicates
turning left and negative indicates turning right. It can be
seen that HEV-I contains a variety of different ego motions.
Distributions of training and test sample trajectory lengths
(in pixels) are presented in Fig. 3 (c) and (d). Although most
lengths are shorter than 100 pixels, the dataset also contains
plenty of longer trajectories. This is important since usually
the longer the trajectory is, the more difficult it is to predict.
Compared to existing data like KITTI, the HEV-I dataset
contains more videos and vehicles, as shown in Table I. Most
object vehicles in KITTI are parked on the road or driving in
the same direction on highways, while in HEV-I, all vehicles
are at intersections and performing diverse maneuvers.

B. Implementation Details

We compute dense optical flow using Flownet2.0 [29]
and use a 5 × 5 ROIPooling operator to produce the final
flattened feature vector Ot ∈ R50. ORB-SLAM2 [41] is used
to estimate ego-vehicle motion from first-person videos.

We use Keras with TensorFlow backend [42] to implement
our model and perform training and experiments on a system
with Nvidia Tesla P100 GPUs. We use the gated recurrent
unit (GRU) [43] as basic RNN cell. Compared to long short-
term memory (LSTM) [44], GRU has fewer parameters,
which makes it faster without affecting performance [45].
The hidden state size of our encoder and decoder GRUs is
512. We use the Adam [46] optimizer with fixed learning



Fig. 4: Qualitative results on HEV-I dataset (better in color).

Fig. 5: Failure cases on HEV-I dataset (better in color).

rate 0.0005 and batch size 64. Training is terminated after
40 epochs and the best models are selected.

C. Baselines and Metrics

Baselines. We compare the performance of the proposed
method with several baselines:

Linear Regression (Linear) extrapolates future bounding
boxes by assuming the location and scale change are linear.

Constant Acceleration (ConstAccel) assumes the object
has constant horizontal and vertical acceleration in the cam-
era frame, i.e. that the second-order derivatives of X are
constant values.

Conv1D is adapted from [26], by replacing the location-
scale and pose input streams with past bounding boxes and
dense optical flow.

To evaluate the contribution of each component of our
model, we also implemented multiple simpler baselines for
ablation studies:

RNN-ED-X is an RNN encoder-decoder with only past
bounding boxes as inputs.

RNN-ED-XE builds on RNN-ED-X but also incorporates
future ego-motion as decoder inputs.

RNN-ED-XO is a two-stream RNN encoder-decoder model
with past bounding boxes and optical flow as inputs.

RNN-ED-XOE is our best model as shown in Fig.2 with



awareness of future ego-motion.

Evaluation Metrics. To evaluate location prediction, we
use final displacement error (FDE) [26] and average displace-
ment error (ADE) [31], where ADE emphasizes more on the
overall prediction accuracy along the horizon. To evaluate
bounding box prediction, we propose a final intersection
over union (FIOU) metric that measures overlap between the
predicted bounding box and ground truth at the final frame.

D. Results on HEV-I Dataset

Quantitative Results. As shown in Table II, we split the
testing dataset into easy and challenging cases based on
the FDE performance of the ConstAccel baseline. A sample
is classified as easy if the ConstAccel achieves FDE lower
than the average FDE (58.00), otherwise it is classified as
challenging. Intuitively, easy cases include target vehicles
that are stationary or whose future locations can be easily
propagated from the past, while challenging cases usually
involve diverse and intense motion, e.g. the target vehicle
suddenly accelerates or brakes. In evaluation, we report the
results of easy and challenging cases, as well as the overall
results on all testing samples.

Our best method (RNN-ED-XOE) significantly outper-
forms naive baselines including Linear and ConstAccel on all
cases (FDE of 24.92 vs. 72.37 vs. 58.00). It also improves
about 15% from the state-of-the-art Conv1D baseline. The
improvement on challenging cases is more significant since
future trajectories are complex and temporal modeling is
more difficult. To more fairly compare the capability of
RNN-ED and convolution-deconvolution models, we com-
pare RNN-ED-XO with Conv1D. These two methods use the
same features as inputs to predict future vehicle bounding
boxes, but rely on different temporal modeling frameworks.
The results (FDE of 25.56 vs 29.06) suggest that the RNN-
ED architecture offers better temporal modeling compared
to Conv1D, because the convolution-deconvolution model
generates future trajectory in one shot while the RNN-ED
model generates a new prediction based on the previous
hidden state. Ablation studies also show that dense optical
flow features are essential to accurate prediction of future
bounding boxes, especially for challenging cases. The FDE
is reduced from 34.04 to 25.56 by adding optical flow stream
(RNN-ED-XO) to RNN-ED-X model. By using future ego-
motion, performance can be further improved as shown in
the last row of Table II.

Qualitative Results. Fig. 4 shows four sample results of
our best model (in green) and the Conv1D baseline (in
blue). Each row represents one test sample and each column
corresponds to each time step. The past and prediction views
are separated by the yellow vertical line. Example (a) shows
a case where the initial bounding box is noisy because it
is close to the image boundary, and our results are more
accurate than those of Conv1D. Example (b) shows how
our model, with awareness of future ego-motion, can predict
object future location more accurately while the baseline

model predicts future location in the wrong direction. Ex-
amples (c) and (d) show that for a curved or long trajectory,
our model provides better temporal modelling than Conv1D.
These results are consistent with our evaluation observations.

Failure Cases. Although our proposed method generally
performs well, there are still limitations. Fig.5 (a) shows a
case when the ground truth future path is curved due to
uneven road surface, which our method fails to consider.
In Fig.5 (b), the target vehicle is occluded by pedestrians
moving in the opposite direction, which creates misleading
optical flow that leads to an inaccurate bounding box (espe-
cially in t = t0 frame). Future work could avoid this type of
error by better modeling the entire traffic scene as well as
relations between traffic participants.

E. Results on KITTI Dataset

We also evaluate our method on a 38-video subset of
the KITTI raw dataset, including city, road and residential
scenarios. Compared to HEV-I, the road surface of KITTI
is more uneven and vehicles are mostly parked on the side
of the road with occlusions. Another difference is that in
HEV-I, the ego-vehicle often stops at intersections to yield
to other vehicles, resulting in static samples with no motion
at all. We did not remove static samples from the dataset
since predicting a static object is also valuable.

To evaluate our method on KITTI, we first generate the
input features following the same process of HEV-I dataset,
resulting in ∼ 8000 training and ∼ 2700 testing samples.
Performance of baselines and our best model are shown
in Table III. Both learning-based models are trained for 40
epoches and the best models are selected. The results show
that our method outperforms all baselines including the state-
of-the-art Conv1D (FDE of 37.11 vs 78.19 vs 55.66 vs
44.13). We also observe that both learning-based methods
did not perform as well as they did on HEV-I. One possible
reason is that KITTI is much smaller so that the models are
not fully trained. In general, we conclude that the use of the
proposed framework results in more robust future vehicle
localization across different datasets.

V. CONCLUSION

We proposed the new problem of predicting the relative
location and scale of target vehicles in first-person video. We
presented a new dataset collected from intersection scenarios
to include as many vehicles and motion as possible. Our
proposed multi-stream RNN encoder-decoder structure with
awareness of future ego motion shows promising results
compared to other baselines on our dataset as well as on
KITTI, and we tested how each component contributed to
the model through an ablation study.

Future work includes incorporating evidence from
scene context, traffic signs/signals, depth data, and other
vehicle-environment interactions. Social relationships such
as vehicle-to-vehicle and vehicle-to-pedestrian interactions
could also be considered.
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