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Abstract

While predicting where people will look when viewing static scenes has been well-
studied, a more challenging problem is to predict gaze within the first-person, ego-centric
field of view as people go about daily life. This problem is difficult because where a
person looks depends not just on their visual surroundings, but also on the task they have
in mind, their own internal state, their past gaze patterns and actions, and non-visual cues
(e.g., sounds) that might attract their attention. Using data from head-mounted cameras
and eye trackers that record people’s egocentric fields of view and gaze, we propose
and learn a two-stage 3D fully convolutional network to predict gaze in each egocentric
frame. The model estimates a coarse attention region in the first stage, combining it with
spatial and temporal features to predict a more precise gaze point in the second stage.
We evaluate on a public dataset in which adults carry out specific tasks as well as on a
new challenging dataset in which parents and toddlers freely interact with toys and each
other, and demonstrate that our model outperforms state-of-the-art baselines.

1 Introduction
We go about our daily lives surrounded by a rich, dynamic, complicated visual world, but can
only focus on a small subset of these surroundings at any moment in time [26]. Humans use
two mechanisms to direct their visual attention: controlling their field-of-view by moving
their head with respect to the world, and controlling the point of foveated vision within
the field of view by moving their eye gaze. A critical task for any embodied intelligent
system — human or machine — is thus to decide, in real time, where to look. This process is
complicated, of course, because the agent must trade off between competing concerns at any
moment in time, and these concerns may depend on many factors. Even an everyday action
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like crossing the street involves splitting attention between watching for turning vehicles,
monitoring oncoming pedestrians, checking that the road ahead is clear, making sure the
walk signal has not changed, etc., and this behavior would be quite different if running
across a busy highway versus crossing a lonely country road.

Much work in computer vision has considered gaze prediction [3, 24, 29, 31, 32] using
combinations of low level features like colors, edges, and texture [31], and higher-level
features like scene context [29] and hands [24]. Recent papers use state-of-the-art deep
learning models to predict gaze and attention [18, 27, 34] which presumably learn to combine
all these cues. But nearly all of this work considers gaze prediction in static photographs or in
recorded videos, typically using fixations from multiple human subjects as ground truth data.
While this problem is interesting and has many practical applications, it is fundamentally
different from the task of deciding where to look while embodied in a physical environment:
given visual stimulus of a charging lion, for example, one’s attention differs dramatically
depending on if they are in a movie theater or in the Serengeti. The recent availability of
low-cost, lightweight, head-mounted cameras makes it possible to record an approximation
of a person’s visual field as they go about everyday activities, and portable eye gaze sensors
let us record where they are looking within that field of view.

In this paper, we consider the problem of predicting eye gaze in egocentric video captured
from head-mounted cameras: given a sequence of several frames, we jointly try to estimate
the gaze location point within each, using data from a portable eye gaze tracker as ground
truth. A few other papers have studied egocentric gaze prediction [24, 34], but they do so
in more controlled contexts (e.g., while subjects are performing a specific task). In contrast,
we consider gaze prediction in more free-form scenarios where task information may be
unavailable. In particular, we propose a novel deep learning framework that first predicts a
coarse attention region, and then combines this attention with spatial and temporal features to
predict a precise gaze point. An advantage to this approach is that the coarse region detection
could integrate information from non-visual sources, if available — e.g., the task or goal that
the camera wearer has in mind — before refining with lower-level visual information. We
evaluate on both an existing dataset of controlled activities, showing that our approach is
more accurate than the state-of-the-art, and on a new dataset featuring children and adults
interacting with objects in an unconstrained toy play scenario. Potential applications of this
work include replicating human behavior in robots, safe driving alert systems, attention-
driven user interface and advertising, and human-machine interaction.

In summary, our main contributions are: (1) considering a new, challenging scenario
for eye gaze prediction; (2) proposing a novel two-stage 3D fully convolutional network
that significantly outperforms the state-of-the-art; (3) using a much more challenging dataset
for egocentric eye gaze prediction in which subjects engage in free-form activities; and (4)
analyzing key components of the model, including the importance of modeling temporal
information and the inherent center bias.

2 Related Work
Eye gaze prediction is highly related to work in visual saliency detection, because salient
regions tend to attract attention and thus gaze [7]. Most early work [15, 16, 21] takes a
bottom-up approach, combining evidence from low-level features [31]. The seminal work
of Itti et al. [21], for example, combines maps of color, intensity, and edge orientation.
Later work gave better performance through better high-level reasoning, implemented using
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Fine-grained Gaze Point Prediction

3D Deconv-conv Net Upsampling 
 N x 64 x 64 x 512

3D Conv Net Fine-grained Gaze Predictor 
N x 64 x 64 x 1

3D Conv Net Coarse Attention Predictor
N x 4 x 4 x 1

Input Video Sequence
N x 64 x 64 x 3

3D Conv Net Feature Extractor
N x 4 x 4 x 512

Concatenate
N x 4 x 4 x 513

Coarse Attention Bounding Box Prediction

Figure 1: The architecture of our proposed two-stage 3D fully convolutional network model
for eye gaze prediction. The number below each component indicates its output dimension,
where N is the length of the input video sequence.

graph-based [15] and spectral clustering-based models [16], for example. More recently,
convolutional neural networks have been used [18, 27], as well as top-down methods such as
contextual scene information integration [29] and bottom-up and top-down stream fusing [6].
All of this work is designed for static images, however.

Recently, eye gaze prediction in egocentric videos has been proposed and investigated [3,
24, 32, 34]. Much of this work uses manually-designed features, such as the correlation
between head and gaze [3, 32] and the motion and positions of hands [24]; these models
may not generalize to other situations when these cues are not available. Zhang et al. [34]
predict gaze in future (unseen) frames by first using a Generative Adversarial Network [13] to
“hallucinate” future frames, and then predicting gaze based on spatial and temporal features
extracted from these frames. Although their goal is to predict future gaze, as a special case
their technique can be used for predicting eye gaze in observable frames.

3 Two-stage 3D Fully Convolutional Gaze Prediction
Model

Our goal is to predict where a person is looking within his or her first-person field of view:
given an egocentric video of several frames, we wish to label each frame with a single (x,y)
coordinate indicating our estimate of their gaze point. There is exactly one correct answer
per frame in this problem, because the visual stimulus captured in any given frame was only
ever experienced and gazed at once, by a single person, in a single fleeting moment. This is
significantly different than predicting gaze in recorded scenes, in which a static image can
be viewed over a period of time by one or more viewers to collect multiple fixation points.

We propose a two-stage approach to address this problem, by first estimating a coarse
region where the eye gaze is likely to lie, and then combining this prediction with other
visual and temporal evidence to estimate a more precise gaze point. We use a deep neural
network model whose architecture is shown in Figure 1. The input is a sequence of N con-
tiguous frames, which are first fed into a modified C3D [30] network for feature extraction.
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A coarse attention predictor uses the extracted features to predict a coarse estimate of the
gaze position. That prediction and the extracted feature maps are concatenated and input to
an upsampling component, the output of which is used by a fine-grained gaze predictor to
produce a more precise gaze location.

3.1 Feature Extraction

Predicting gaze location is difficult, and making reasonable predictions requires combining
multiple sources of weak information that depend on the specific context, scenario, and envi-
ronment. For example, if we know that a subject is preparing breakfast (as in the GTEA [11]
and GTEAplus [24] datasets, for example), it is reasonable to assume most gaze will be on
food ingredients, so object detection may provide sufficient evidence for accurate gaze pre-
diction. However, since we aim to predict eye gaze in uncontrolled, real-world scenarios, we
learn the features automatically to extract as much visual information as possible.

Three-dimensional convolutional networks such as C3D [30] have become popular for
capturing spatio-temporal features [22, 23]. To extract features for gaze prediction, we mod-
ify C3D by removing the fully-connected layers and the last pooling layer. We also modify
the kernel size and the stride of the remaining 4 pooling layers to both be (1,2,2) instead of
(2,2,2); this causes the input sequence to be downsampled by a factor of 16 in height and
width dimensions, but does not affect the temporal dimension. We leave the architecture of
the convolutional layers unchanged so that we can use C3D network weights pretrained on
large-scale datasets (e.g., Sports-1M [23]), to simplify our learning. At training and test time,
we take a sequence of N RGB images It,t+N−1, resize each frame to 64×64 pixels, and input
them to the network, which produces feature Ft,t+N−1 of dimensionality N×4×4×512.

3.2 Coarse Attention Prediction

In coarse attention prediction, we divide each video frame into a coarse (e.g., 4× 4) grid
of cells, and estimate a gaze likelihood distribution over that grid. To do this, we adapt
the Fully Convolutional Networks (FCNs) of Long et al. [25], who performed dense spa-
tial image labeling (specifically, semantic segmentation) by replacing fully-connected layers
with convolutional layers. Here our goal is to predict an approximate attention map for each
frame in the input sequence. Since our desired output is exactly a sequence of dense spatial
predictions, we design our coarse predictor with 3D convolutional layers inflated from 2D
convolutional layers that are transformed from fully-connected layers.

In particular, the input of coarse attention predictor is the set of features extracted from
the N frames, Ft,t+N−1, and the output Ct,t+N−1 is a sequence of prediction maps with di-
mensionality N× 4× 4× 1. We divide each frame into a corresponding 4× 4 grid cell. If
the eye gaze is within a certain cell, we want the response at the corresponding position in
the output map to be 1, and otherwise we want the response to be 0. Since there is exactly
one gaze point per image, this can be treated as a classification problem, and flattening the
mth output map Ct+m−1 produces a one-hot vector Flat(Ct+m−1). Note that predicting which
cell contains the true eye gaze is the same as predicting which cell’s center is the closest
to the gaze. Thus we can use the center of the cell having the highest output from coarse
attention predictor as an estimate of the eye gaze point prediction, although the precision of
this estimate is obviously limited by the coarseness of the grid.
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3.3 Prediction Map Upsampling

To reduce quantization error caused by the coarse attention estimation, we upsample the
response maps to have the same spatial resolution as the input image frames. We again
follow Long et al. [25] and use deconvolution layers to let the network learn the upsampling
operation itself [25]. We recombine these maps with the extracted visual features, so that the
final gaze estimation can consider evidence from the original frame as well as from the coarse
attention prediction’s response maps. Since the input of upsampling is the extracted feature
along with the coarse prediction, the upsampling is similar to a decoding process; inspired
by the decoder of [4], we added two 3D convolutional layers after each deconvolution.

In particular, we concatenate the extracted feature Ft,t+N−1 and the coarse attention pre-
diction maps Ct,t+N−1 to obtain a new feature with dimension N×4×4×513. The upsam-
pling network has two deconv-conv blocks, each of which upsamples its input by a factor of
4 and processes the decoded feature. The output of upsampling, denoted Ut,t+N−1, has di-
mension N×64×64×512, which has the same height and width as the input video frames.

3.4 Fine-grained Gaze Prediction

Like coarse attention prediction, our fine-grained gaze point estimation is a dense labeling
task: we aim to generate a likelihood map for each frame and choose the point with the
highest probability of gaze. In our model, the fine-grained gaze predictor shares the same
network components (number and type of layers, kernel size, stride, number of filters, etc.)
as coarse prediction, but the two networks have different weights and are trained separately.

Given the output Ut,t+N−1 of the upsampling component, the fine-grained gaze predictor
produces an output Pt,t+N−1, which is a sequence of probability maps of dimension N×64×
64×1. We want the m-th output map to be a Gaussian distribution with its center at the gaze
point. Note that this is slightly different from coarse attention prediction where the flattened
form of the output map is a one-hot vector; this encourages the network to learn that closely
neighboring pixels usually have strong correlation (while neighboring coarse cells do not),
and improves robustness against slight measurement errors of the gaze trackers.

3.5 Implementation and Training Details

We used a batch normalization layer [19] after each convolutional layer, and ReLU activa-
tions for all layers except the outputs of the coarse attention predictor and fine-grained gaze
predictor, which use Softmax instead. We tried different input sequence lengths and found
N = 16 worked best (as we discuss below). Our implementation is based on Keras [10] and
Tensorflow [1]. Detailed architecture and other information is available on the project home-
page, http://vision.soic.indiana.edu/t3f/. We trained the two stages of our model separately
(although it is also possible to train them jointly).

Training the coarse attention predicting stage. We first trained the feature extractor and
coarse attention predictor. We initialized the feature extractor with C3D weights [30] pre-
trained on Sports-1M [23], while the weights of the coarse attention predictor were initialized
randomly. We used stochastic gradient descent with learning rate 0.0005, momentum 0.9,
decay 0.01 and L2 regularizer 10−6. Given a coarse attention output sequence Ct,t+N−1 and
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ground truth Ĉt,t+N−1, we use a cross entropy loss summed over the N frames,

L f s =
t+N−1

∑
i=t

Lce(Ĉi,Ci), with Lce(p,q) =−∑
x

∑
y

p(x,y) logq(x,y), (1)

where p and q are 2D maps of true distribution and predicted distribution, and x and y sum
over the spatial coordinates.

Training the fine-grained gaze predicting stage. We then train the entire model end-to-end.
We initialized the feature extractor and coarse attention predictor with weights obtained in
our first-stage training, and randomly initialize the upsampling component and fine-grained
gaze predictor. We use stochastic gradient descent with learning rate 0.0001, momentum 0.9,
decay 0.01, and L2 regularizer 10−6. Given an output map sequence Pt,t+N−1 and ground
truth P̂t,t+N−1, our loss function is Kullback-Leibler divergence summed over frames,

Lss =
t+N−1

∑
i=t

DKL(P̂i||Pi), with DKL(p,q) = ∑
x

∑
y

p(x,y) log
p(x,y)
q(x,y)

, (2)

where p and q are 2D maps of true distribution and predicted distribution, and x and y sum
over the spatial coordinates of the map.

4 Experiments

We evaluated our technique on two datasets of first-person video collected with gaze track-
ing, and compared its performance with other state-of-the-art methods and baselines.

4.1 Datasets and Evaluation Metrics

We used two datasets in our evaluation, one collected from adults who were given a specific
task, and one collected from parents and toddlers who were freely playing in a toyroom. The
Object Search Task (OST) dataset of Zhang et al. [34] contains 57 video clips in which
55 subjects perform object search and retrieval tasks. Each video lasts about 15 minutes, is
recorded at 10 fps with 480× 640 resolution, and the horizontal view angle is 60 degrees.
We used the same frames and same test and training data split as in their paper to permit a
fair direct comparison. In most of these frames, the subjects are performing one specific task
(signing a document), so this dataset mimics applications in which the task is known.

In contrast, our new Adults, Toddlers and Toys (ATT) dataset provides a more chal-
lenging scenario with uncontrolled tasks, interaction between the subject and other people,
appearance of many objects including other people’s hands, etc. It is based on our dataset
collected for studies in developmental psychology [2, 5] and consists of 20 pairs of videos
recorded by head-mounted cameras on children and adults as they play together with toys.
Each video clip lasts 5 to 10 minutes and has a frame rate of 30 fps. The view angle along the
width dimension is 70 degrees. Most videos were taken at a resolution of 480×640, while a
small subset have resolution of 480×720 (due to different hardware configurations). In our
experiments, we used frames from 18 videos of parents as the training set and 2 videos of par-
ents as the test set. To remove noise, frames in which the eye gaze was outside of the image
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Figure 2: Sample results of our model. Frames in the first row are from the OST dataset.
Frames from the second row to the last row are from the ATT dataset. The big red cross
indicates the ground truth gaze point, the little green cross indicates the gaze point prediction,
and the blue bounding box indicates the coarse attention cell prediction.

plane or stationary for an unrealistically long time period were discarded, resulting in an av-
erage of 10,838 frames remaining in each video. The last four rows of Figure 2 shows sample
frames from this dataset. More information is available at http://vision.soic.indiana.edu/t3f/.

Area Under the Curve (AUC) [8] and Average Angular Error (AAE) [28] are two widely
used metrics to evaluate the results of eye gaze prediction. However, in our first stage pre-
diction, the expected output is not a saliency map. Though we can take the center of the grid
cell with the highest response as an approximate gaze prediction to compute AAE, AUC is
not applicable here. For consistency, we use AAE throughout our experiments.

4.2 Results on Object Search Task (OST) Dataset

We first evaluated on the OST dataset, which was recorded from subjects performing spe-
cific tasks. Quantitative results in terms of Average Angular Error are reported in Table 1
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Method AAE

Our full model (T3F) 8.56
Our coarse predictor 14.32

Our full model with cropping 10.71
Our coarse predictor with cropping 15.03

Deep Future Gaze [34] 10.60
SALICON [18] 13.30
Information Maximization [9] 17.00
Graph-based Visual Saliency (GBVS) [14] 18.80
Itti & Koch [20] 19.00
Adaptive Whitening Salience [12] 22.80
Image Signature [17] 24.20
Saliency using Natural Statistics [33] 25.00

Table 1: Average Angular Error of our method compared to others, on the OST dataset.
Lower errors are better.

Number of frames (N)
1 2 4 8 16

Coarse attention (CA) 22.86 21.65 20.23 19.08 18.11
Full model (T3F) 19.29 17.85 16.30 15.98 15.24

Table 2: Effect of input sequence length on Average Angular Error of our models, on the
ATT dataset. Lower errors are better.

for several variants of our approach. The table also shows quantitative results for several
baseline techniques that predict gaze or saliency. Of these, the only one that was specifi-
cally designed for egocentric gaze prediction (Deep Future Gaze [34]) performs best (with
an error of 10.60); the other baselines range up to 25.00. Our coarse attention predictor
alone scores significantly better than most of these, at 14.32 degrees, while our full model
performs better than all by a significant margin, at 8.56. The large error drop between our
coarse attention model and the full model shows that our fine-grained gaze prediction stage
successfully eliminates the error inherent in coarse-resolution maps. Gaze prediction runs at
about 15 fps on our single NVidia Titan X Pascal GPU.

Qualitative results are shown in the first row of Figure 2. Coarse attention tends to find
the most task-relevant object or the hands most of the time. Note that this was learned
implicitly by the network itself: we do not use an explicit object or hand detector. We also
see that fine-grained gaze prediction effectively focuses from a coarse cell to a predicted
gaze point. Sometimes the adjustment even makes the final gaze prediction jump out of the
coarse attention cell and move towards the ground truth.

4.3 Center Bias in Egocentric Videos

We tried to improve our results by using dataset augmentation, which is of course a very
standard technique in vision to discourage overfitting. In particular, we tried cropping im-
age frames by varying amounts to generate additional examples. Surprisingly, however, we
found that this caused the performance of our model to actually decrease, as Table 1 shows.
Our hypothesis is that cropping with scale of at least 2.0 (so that the height and the width
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Figure 3: (a) Illustration of center bias elimination by cropping the images. The yellow point
is the eye gaze ground truth and small boxes with different colors indicate randomly cropped
images from this image; (b) AAE curve of adding center bias back manually. The blue curve
indicates the AAE after adding center bias back using Gaussian masks at the center with
different σ , the red dash line indicates the AAE of our model without cropping, and the
green dash line indicates the AAE of our model with cropping at the scale of 2.0.

of the cropped image are half of the original image) has the effect of removing the center
bias — people tend to gaze at the center of their field of view. This effect is illustrated in
Figure 3(a). In other words, if we crop the image randomly at the scale of 2.0, the gaze point
can end up anywhere in the cropped image, even though it was in the center of the original.

In order to further study the effect of center bias, we experimented with manually adding
center bias back to the predictions of our full model trained with cropping. To do this,
we multiplied the output maps with a 2D Gaussian mask having mean at the center. We
varied the standard deviation σ of the Gaussian, and plot the AAE values in Figure 3(b).
We found that when σ is very small, the error is even greater than that of our model with
cropping; a very small σ means adding a very strong center bias. This result shows that our
model learns effective visual signals for predicting gaze, instead of just always predicting the
center. As σ increases, the AAE begins to drop but is bounded below by the AAE of the full
model without cropping, because the center bias is only an approximation of the true bias in
egocentric videos. This demonstrates the necessity of allowing the model to learn the bias
itself instead of adding it manually. After a certain point, the AAE begins to increase since
the strength of the center bias drops as σ increases. Finally, as σ becomes very large, the
AAE tends to be equal to that of the model with cropping since it has almost no effect.

4.4 Results on Adults, Toddlers and Toys (ATT) Dataset
Our ATT dataset is very different from OST in that it was recorded in an unstructured envi-
ronment in which interacting children and parents were freely playing with toys as well as
with each other. Qualitative results in the bottom rows of Figure 2 show that our model is
robust enough to predict eye gaze in this more challenging dataset. As with OST, the second
stage still refines the coarse attention, but the coarse attention (blue rectangles) focuses on
more diverse regions because of ATT’s complexity: more hands, objects, and people are in
view, and we do not know what task the subject has in mind (e.g., which toy the subject
likes, how he/she wants to play, whether he/she wants to interact with other people, etc.).
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Quantitative results are in Table 2. Our full model has an average error of 15.24 degrees,
which is significantly greater than the 8.56 of OST (even considering the differences in field
of view between the two cameras), reflecting the difficulty of this dataset.

Table 2 also presents results for different input frame sequence lengths (N), which control
how much temporal information the network is able to use. Consistent with intuition, we
found that AAE decreases as N increases, but the improvement is capped by the size of the
receptive fields. The AAE of the coarse model with N = 16 is better than that of the full
model with N = 1, even though the coarse model introduces significant quantization error.
This is because N = 1 carries no temporal information, which demonstrates the importance
of temporal signals in solving this task. AAE is still decreasing from N = 8 to N = 16,
suggesting that larger sequence lengths may produce even less error. Unfortunately, we were
not able to try larger N due to limited GPU memory (on our single NVidia Titan X).

4.5 Ablation Study
To study the benefit of our two-stage structure, we removed the coarse attention predictor
and trained the model to directly predict the fine-grained gaze point. On both datasets, we
found that the direct model had larger error than our two-stage model (9.02 vs. 8.56 degrees
on OST, and 16.09 vs. 15.24 on ATT), which demonstrates the effectiveness of the two-
stage structure to improve performance. Interestingly, the direct model also outperforms all
other existing baselines (as shown in Table 1), including the state-of-the-art model of Zhang
et al. [34]. One hypothesis is that unlike their technique (which is designed for predicting
gaze in future, unseen frames), ours is able to use information from both previous and future
frames to jointly find the best gaze point across all of them. Also, we observe that our direct
model with N = 16 performs worse than our full model with N = 8, despite having more
temporal information, again confirming the effectiveness of our two-stage structure.

5 Conclusion
We proposed a novel two-stage 3D fully convolutional network for egocentric eye gaze pre-
diction. We evaluated on two challenging datasets, one of which features uncontrolled tasks,
complex objects, and interaction with other people. We demonstrated the capacity of our
model to use both spatial and temporal information, including the center bias. Evaluations
show our model significantly outperforms other methods. In future study, we plan to evalu-
ate other models on the ATT dataset to compare with our model, and to test our approach on
even less constrained datasets. We also plan to incorporate non-visual evidence, such as in-
formation about a person’s intention, into gaze prediction. Finally, we plan to develop better
metrics for evaluation that reflect how gaze detection would work in real-world applications.
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