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Abstract

Understanding visual attention in children could yield insight
into how the visual system develops during formative years
and how children’s overt attention plays a role in development
and learning. We are particularly interested in the role of hands
and hand activities in children’s visual attention. We use head-
mounted cameras to collect egocentric video and eye gaze data
of toddlers during playful social interaction with their parents,
and developed a computer vision system to track and label dif-
ferent hands within the child’s field of view. We report detailed
results on appearance frequencies and spatial distributions of
parents’ and children’s hands both in the child’s field of view
and as the target of the child’s attentional fixation.
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Introduction

The visual world is cluttered with objects and events gener-
ated by oneself and others. To efficiently process a cluttered
and complex visual world, perceptual and cognitive systems
must selectively attend to a subset of this information. Atten-
tion can be viewed as a spatial spotlight (Posner, 1980) that
can be implemented both internally and externally. Although
adults can attend to a location outside the area targeted by
eye gaze (Shepherd, Findlay, & Hockey, 1986), attention is
often tied to the body and sensory-motor behaviors — adults
typically orient gaze direction to coincide with the focus of
the attentional spotlight. Studies of adults engaged in com-
plex tasks from making sandwiches to copying block patterns
(Ballard, Hayhoe, Pook, & Rao, 1997; Hayhoe & Ballard,
2005) suggest that the momentary disposition of the body in
space serves as a deictic (pointing) reference for binding sen-
sory objects to internal computations (Ballard et al., 1997;
Spivey, Tyler, Richardson, & Young, 2000). These studies
analyzed the coordination of eye, head, and hands by mea-
suring multiple streams of behavior in free-flowing tasks with
multiple goals and targets for attention.

Attention and information selection are critical in early de-
velopment and learning (Mundy & Newell, 2007) as early
attention is predictive of later developmental outcomes (Ruff
& Rothbart, 1996). Most studies of the development of at-
tention employ highly-controlled experimental tasks in the
laboratory. Many studies use remote eye tracking systems
to measure looking behaviors, revealing much about the vi-
sual attention of toddlers as they passively examine visual
stimuli displayed on a computer screen. However, more re-
cent studies using head-mounted eye tracking have addressed
visual selection in freely-moving toddlers when they are en-
gaged in everyday tasks (Franchak, Kretch, Soska, & Adolph,

2011). In more natural interactions, there are multiple objects
competing for attention, various manual actions toward those
toy objects, and spontaneous goals. Visual attention changes
from moment to moment according to the child’s own actions
and the parent’s actions toward the child and objects. Though
complex, these are the contexts in which real-world learning
occurs. Compared with adults, young children’s attentional
systems may be even more tied to bodily actions.

The goal of the present study is to understand how sensory-
motor behavior supports effective visual attention in toddlers.
Towards this goal, we developed a more naturalistic exper-
imental paradigm in which a child and parent wear head-
mounted eye trackers while freely engaged with a set of toys.
Each eye tracking system captures egocentric video from a
first person perspective as well as gaze direction in the first-
person view. In this way, we precisely measure the visual
attention of both the parent and child, and also their manual
actions. Recent findings using the same paradigm show that
in toy play, both children and parents visually attend to not
only the objects held by oneself but also the objects held by
the social partner (Yu & Smith, 2013); in doing so, they create
and maintain coordinated visual attention by looking at the
same object at the same time. The target object is likely to be
held by child or parent. Similarly, other work has shown that
by holding objects, parents increase the likelihood that infants
will look at parents’ hands (Franchak et al., 2011). These re-
sults suggest the important role of hands and hand activities
(of both children and parents) in toddlers’ visual attention.

Given previous findings, the present study focuses on pro-
viding new evidence on how eye and hand actions interact to
support effective visual attention to objects in toddlers. We
first describe a new method to automatically detect hands and
faces in egocentric video, allowing us to locate (at a pixel
level) both one’s own hands and the social partner’s hands in
the first person view. Next, we report a series of results that
link hands and hand actions with visual attention, to show
how the child’s and parent’s hands contribute to visual infor-
mation selection in the child’s view.

Experiment

To realize our overall goal of measuring visual attention in
natural interactions, we developed a multi-modal sensing sys-
tem that allows us to capture a wide variety of video and sens-
ing data from participants in our lab.



child’s egocentric view

parents’s egocentric view

A T [ =%

Z‘ ¥ fM

%
i
G o

|
4

from eye
camera

from head

camera from head

camera

»=

L/

experimental setup

Figure 1: Experimental setup. We use 4 cameras to record
joint play between a child and parent. The head-mounted eye
tracking systems (worn by both) each consist of a head cam-
era to capture its wearer’s egocentric view and an eye camera
that tracks the eye’s pupil. All cameras work with a temporal
resolution of 30Hz and a spatial resolution of 480x 720px.

Muti-modal Sensing System

Our sensing environment allows us to monitor parents and
children as they engage in free-playing interaction with toy
objects, as shown in Figure 1. A child and parent sit at a table
in the lab and face one another. Each wears a lightweight,
head-mounted eye tracking system consisting of two cameras
(Franchak et al., 2011): a wide-angle outward-facing cam-
era (100° diagonal) capturing the egocentric field of view of
the participant, and an inward-facing infrared camera pointed
at the participant’s left eye, which tracks the pupil in order
to measure eye gaze position (shown by green cross-hairs in
Figure 1). The eye tracker was calibrated by encouraging par-
ticipants to look at known points in the environment; once
calibrated, the accuracy of the eye tracker is about 3°. In
addition, two scene cameras, two microphones and two head-
mounted motion sensors with 6 degree-of-freedom tracking
allowed for a variety of multi-modal coding. As the purpose
of this study is to investigate the role of hands in a toddler’s
visual attention, the focus of this paper will be on the child’s
egocentric video and eye gaze data.

Subjects

For the study, we considered 6 child-parent dyads. The chil-
dren’s mean age was 19 months (SD = 2.56 months). Dyads
were chosen based on hand tracking performance (see next
section) among a pool of 14 candidates to ensure the great-
est accuracy in the reported results. Although the sample size
was small, analyzing high-density data with more than 10,000
frames per child yielded highly consistent results.

Procedure

Parents were told to engage their child with toys (three pos-
sible toys were on the table) and otherwise interact as natu-
rally as possible, leading to a free-flowing interaction with no

constraints on where parents or children looked or what they
should do or say. Each experiment consisted of four trials and
each trial lasted about 1 to 2 minutes. In between trials, the
toy sets were replaced to keep the children interested.

Data

We collected a total of 67,913 frames (about 38 minutes) of
video data from the 6 children. Of those frames, 54,367 had
valid gaze data (i.e. located within the camera’s field of view)
in the form of an x-y coordinate, indicating the gaze center.
To detect, track, and distinguish all hands that appear in our
video data (including the child’s left and right hands, and the
parent’s left and right hands), we developed a special hand
tracking algorithm that is described in the following section.

Hand Tracking

Given the large amount of video data collected in our exper-
iments, we needed automated techniques to track and label
the positions of the hands in each video frame. Tracking is
a well-studied problem in the computer vision literature, and
some work has specifically studied hand tracking (Chen, Fu,
& Huang, 2003) in the context of gesture recognition. How-
ever, most of that work studies video from stationary cam-
eras. The fact that our video comes from head-mounted cam-
eras introduces significant new challenges because observers’
heads are free to move, continually changing the locations of
hands in the field of view. In fact, we are not aware of any
work that has studied multiple hand tracking in egocentric
video; the closest is that of Ren and Gu (2010), who propose
a system for recognizing objects held by the camera wearer.
Fortunately, the constraints of our lab environment help to
ease our tracking problem: we know there are at most two
people in each frame, that the child’s hands are closer to the
camera than the adult’s hands, that in general the children
and parents are facing one another, and that the participants’
clothing is white. Our goal is to identify which of the four
hands (child’s hands and parent’s hands) are visible in each
frame, and then to identify the position of the visible ones.
Our approach consists of four major steps: (1) identifying
potential skin pixels based on color; (2) clustering these pix-
els into candidate hand and face regions; (3) tracking these
regions over time; and (4) labeling each region with its body
type (face, child left or right hand, parent left or right hand).

Step 1: Skin Detection

To look for faces and hands, we first identify pixels having
skin-like colors. Although human skin colors are surprisingly
consistent across people when represented in an appropriate
color space (we use YUV here), pixel-level skin classification
is difficult because illumination can dramatically alter skin
appearance and because many common objects (like walls)
often have skin tones. We thus tuned our skin classifier for
each individual subject, by sampling 20 frames at random and
having a human label the skin regions in each frame. We
then used these labeled pixels as training exemplars to learn a
simple Gaussian classifier, in which each pixel is encoded as



a 2d feature vector consisting of the two color dimensions (U
and V). To detect skin in unlabeled images, we evaluate the
likelihood of each pixel under this model, threshold to find
candidate skin pixels, and use an erosion filter to eliminate
isolated pixels.

Step 2: Skin Grouping

Given the skin detection results from Step 1, we apply Mean
Shift clustering (Comaniciu & Meer, 2002) to each frame to
group skin pixels into candidate skin regions. Mean Shift
does not require knowing the number of clusters ahead of
time (as K-means does), but instead requires an estimate of
the size and shape of the clusters; we use circular disks of
radius 75 pixels in our implementation.

Step 3: Tracking

We next attempt to find correspondences between the skin
blobs estimated in temporally-adjacent frames, in order to
create tracks of skin regions over time. To do this, we scan
the frames of the video in sequence. For each frame i, we
assign each skin region to the same track as the closest region
in frame i — 1 as long as the Euclidean distance between the
region centroids is below a threshold (we use 50 pixels), and
otherwise we start a new track. Each track thus consists of a
starting frame number indicating when the region appears, an
ending frame number indicating when it disappears, and an
(x,y) position of the region within each intervening frame.

Step 4: Labeling Skin Regions

Finally, we need to identify which tracks from Step 3 cor-
respond to actual skin regions, and then to label each track
with one of five possible body parts (parent’s head, child left
or right hand, parent left or right hand). We experimented
with various strategies and settled on a relatively simple ap-
proach that uses the relative spatial location of regions within
the frame (and in particular the observation that the parent’s
head is usually above and between the parent’s hands, which
are in turn above the child’s hands). We thus first try to find
tracks corresponding to the face, and then check the relative
position of other regions to find and label the hands.

Detecting Face Tracks. We tried off-the-shelf face detec-
tors, but they are not reliable in our context because the par-
ent’s head is often not fully visible (e.g. in left frame of
Figure 2). Instead we built a very simple face detector that
uses the fact that the parents in our experiments wear a black
head-mounted camera. In particular, we trained a linear Sup-
port Vector Machine classifier (Burges, 1998) on manually-
labeled head regions (using the same 20 frames that we used
to learn skin color, with the remaining skin regions serving
as negative exemplars), where the features consist of a 256-
bin grayscale histogram over the pixels in the track region.
We then identify faces by finding tracks for which the trained
SVM classifies over half of the regions in the track as faces.

Labeling Hands. Once face tracks have been found, we
mark potential hand tracks based on their relative position

Figure 2: Two sample frames showing the results of our ego-
centric hand-tracking algorithm. The red circles denote the
“hotspots” used to label skin blobs. The black crosshair in-
dicates eye gaze center. Left: Hotspots in their default center
location. Right: Hotspots aligned based on detected face.

with respect to the face. Anchoring the expected spatial lo-
cations of hands to the parent’s head helps compensate for
view changes due to the child’s head motion. In particular, we
create a configuration of five points (‘“hotspots”) that roughly
correspond to the expected (mean) position of the four hands
relative to the face, illustrated as red circles in Figure 2. For
each non-face candidate track generated by Step 3, we com-
pute the centroid of its location across the frames in which it
is visible, find the hotspot closest to the centroid, and assign
the track to the corresponding body part. When no face is
detected, the hotspots take a default position that assumes the
face is in the top-center (Figure 2, left pane).

Evaluation

We manually tested the accuracy of our hand tracking algo-
rithm on 600 randomly-selected frames (100 frames for each
of 6 subjects), and counted the proportion of correctly-labeled
regions. We found that the overall accuracy was 71%, rang-
ing from 67% to 75% across the subjects. In comparison, a
baseline method that randomly assigns labels to skin regions
(and assuming that the skin segmentation and clustering per-
form correctly) achieves 20% accuracy. Labeling errors are
caused by a variety of factors, but the two most common are:
(1) when hands are close together and the clustering algo-
rithm incorrectly combines them into a single body part, and
(2) when hands spend a significant amount of time away from
their expected location relative to the head.

Results and Discussion

The hand tracking algorithm provides frame-by-frame data
about the position, size, and shape of each hand in the child’s
field of view. We analyzed this data in terms of spatial distri-
butions of the different hand classes and in terms of how often
each class appears over time. Further, we used children’s eye
gaze data to investigate moments where hands were the target
of the child’s overt visual attention.

Hands in the Child’s Field of View

To determine how often children had the opportunity to view
their own hands and their parents’ hands, we calculated how
often hands are present in the field of view.
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Figure 3: Bar graphs showing the proportions of frames in
which each class of hands was detected (error bars show 1
SE). For comparison, the value for the parent’s face is shown.

Frequency of Hands in View. Figure 3 shows the propor-
tion of frames in which each hand class was detected. As
the hand tracking algorithm needs to distinguish hands from
faces and thus implicitly tracks the parent’s face as well, we
include results for the face for reference. Overall, hands
were frequently in view, although the child’s own hands (right
hand = 38% and left hand = 40%) are in view less frequently
than the parent’s hands (right hand = 57% and left hand =
66%). A 2 (agent: child, parent) x 2 (hand: left, right)
repeated-measures ANOVA confirmed a main effect of agent,
F(1,5) =21.74, p = .006. The main effect of agent x hand
interaction did not reach significance.

The parent’s face also appeared frequently in the child’s
view and was detected in 77% of the frames. We note here
that the set of subjects we chose (based on hand detection ac-
curacy) might be slightly biased to have parent’s faces in view
more often than others as our algorithm uses face information
to improve its prediction and thus tends to perform better for
subjects where the face is in view more frequently.

Spatial Distribution of Hands in View. Spatial asymme-
tries might account for the different frequencies with which
children’s and parents’ hands were visible. Next, we present
spatial distributions of hands in the children’s field of view in
the form of heat maps. The first row of Figure 4B-C shows
the distributions of the child’s left hand, the child’s right hand,
the parent’s right hand and the parent’s left hand, respectively.
Each data point in the heat map corresponds to the centroid
(mean of the hand blob) of the detected hand. The distribu-
tions are accumulated over all 6 subjects where N depicts the
number of frames with the hand in view. To allow quantitative
comparison, we calculated robust (60% trimmed) statistics in
the form of horizontal and vertical mean (u) as well as hori-
zontal and vertical standard deviation (o) of the distributions
(off-diagonal co-variances are not shown).

Children’s left and right hands had very similar distribu-
tions in terms of variance (Figure 4B) with distributions that

expanded more horizontally than vertically: &, was roughly
twice as much as o, for each hand. Parents’ left and right
hands also have similar distributions in terms of variance
(Figure 4C). A 2 (agent: child, parent) x 2 (hand: left, right)
X 2 (direction: horizontal, vertical) ANOVA confirmed the
main effect of direction, F(1,5) = 36.4, p = .002. However,
a significant agent x direction interaction, F(1,5) = 10.5,
p = .023 and follow-up pairwise comparisons show that par-
ents’” hands occupy a larger vertical space (right hand 6, = 59,
left hand o), = 60) compared to children’s hands (right hand
6, = 37, left hand 6, = 43, p = .009). Horizontal variance
terms did not differ between the hands of children and par-
ents, and no other effects approached significance.
Children’s and parents’ hands were spatially segregated in
visual space. Overall, children’s hands were lower in the vi-
sual field compared to parents’ hands and were often seen to-
wards the lower boundary of the field of view (u, = —172 for
the left hand and u, = —178 for the right hand). A 2 (agent:
child, parent) x 2 (hand: left, right) ANOVA on u, revealed
that parents’ hands were significantly higher than children’s
hands (main effect of agent, F(1,5) = 184.6, p < .001). In
the horizontal dimension, the child’s right hand and parents’
left hand tended to reside in the right half of the visual field,
while the child’s left hand and parents’ right hand tended to
reside in the left half of the visual field. A 2 (agent: child,
parent) x 2 (hand: left, right) ANOVA on u, confirmed a sig-
nificant agent x hand interaction, F(1,5) = 1377.7, p < .001.
Since our automatic hand labeling is not perfect and makes
spatial assumptions, these results could potentially be biased
by our algorithm. We manually labeled the location of hands
in 2,800 randomly sampled frames and repeated our analyses.
A 2 (agent: child, parent) x 2 (hand: left, right) ANOVA on
the u,’s of manually labeled frames confirmed that parents’
hands were located higher than those of children (main effect
of agent, F(1,5) = 111.1, p < .001). In addition, a 2 (agent:
child, parent) x 2 (hand: left, right) ANOVA on the u,’s in
hand labeled frames showed a significant agent x hand inter-
action as in frames labeled by our algorithm, F(1,5) = 529.4,
p <.001). We conclude that our results on spatial locations of
hands in the field of view are not an artifact of our algorithm.
Different spatial distributions of hands may account for dif-
ferent frequencies of hands being visible. Most likely, chil-
dren’s hands were not as frequent as parents’ hands because
they occupied locations towards the lower boundary of the
field of view. If children moved their hands down or tilted
their heads up, their own hands would leave the field of view.

Hands as Target of the Child’s Overt Attention

Next we examined how often and where hands were targeted
by children’s gaze. We counted a gaze fixation on the hand
whenever a 10° hot spot (corresponding to a circle with radius
of 32 pixels) around the gaze center overlapped with the area
of a detected hand.

Frequency of Hands Being Targeted by Gaze. Figure 5
(left) shows mean values for the overall proportion of frames
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Figure 4: Spatial distributions of hands and eye gaze. Column A: The top image shows a sample frame from the child’s view,
while the bottom image shows the spatial distribution of the children’s eye gaze across all valid frames. Column B: The top row
shows the distributions of children’s own hands (based on hand centroids) within their field of view. The bottom row shows the
distributions of children’s eye gaze while looking at their own hands. Column C: The top row shows the distributions of parent’s
hands within the children’s field of view. The bottom row shows the distributions of children’s eye gaze while looking at their
parent’s hands. Also shown are robust (60% trimmed) estimates of mean () and standard deviation (o) of the distributions as
well as the number of data points (V). Heat maps are 480x720px and a small Gaussian blur (65 = 10px) was applied.

in which children’s gaze overlapped with each hand. Children
spent about twice as long looking at parent’s hands (about
9.5% for the right hand and 7.8% for the left hand) than they
did looking at their own hands (3.0% right hand and 5.3%
left hand). A 2 (agent: child, parent) x 2 (hand: left, right)
on proportion of frames targeting hands confirmed a main ef-
fect of agent, F(1,5) = 8.52, p = .03, and found no other
significant effects.

Higher rates of looking to parents’ hands may be the re-
sult of parents’ hands being in view more often. Thus, we
recalculated the proportion of looking to hands based on the
number of frames where each hand was present in the field
of view (right side of Figure 5). This normalization increased
the proportion of looking for both the child’s own hands and
the parent’s hands. Furthermore, the difference between the
time spent looking at parent’s hands and looking at their own
hands is no longer significant when taking the availability of
hands into account (no effects found in a 2 (agent: child,
parent) x 2 (hand: left, right) on normalized proportions of
frames targeting hands).

Spatial Distribution of Gaze when Targeting Hands. Fi-
nally, we present the spatial distributions of children’s eye
gaze (bottom row of Figure 4) when viewing hands. The gaze
heat maps are composed similarly to the hand heat maps, ex-
cept that each data point now corresponds to the eye gaze cen-
ter as opposed to a hand centroid. Prior work has shown that
gaze tends to be biased towards the center of the field of view
(Foulsham, Walker, & Kingstone, 2011). Figure 4A shows
the overall distribution of eye gaze during the experiment, ac-
cumulated over all 6 subjects. Indeed, the distribution has this
center bias with a mean close to the center of field of view and
similar variances in horizontal and vertical direction.

The bottom row of Figure 4B-C shows subsets of the eye
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Figure 5: Bar graphs showing the proportions of frames in
which each class of hands was looked at (based on a 10°
gaze hot spot). Left: Fractions based on all frames with valid
eye gaze (N = 54367). Right: Fractions based on all frames
where the corresponding hand was in the field of view.

gaze data, taking only into account moments when gaze was
fixated on one of the hands. Across children’s and parents’
hands, we observed that distributions when gaze targeted
hands were more centrally located compared to the overall
distributions of hands in the field of view. To verify this statis-
tically, we calculated the distance from the center of the field
of view for the means of the distributions of the hands and
the gaze locations when hands were fixated (top and bottom
rows of Figure 4B-C). A 2 (agent: child, parent) x 2 (hand:
left, right) x 2 (distribution: hands overall, gaze-targeted)
revealed a main effect of agent, F(1,5) = 66.1, p < .001,
distribution, F(1,5) = 13.7, p = .014, and a significant 3-
way interaction, F(1,5) = 17.7, p = .008. Overall, parents’
hands (M = 131.4 pixels) were closer to the center of the
field of view compared to children’s hands (M = 195.5 pix-
els). Follow-up tests on the 3-way interaction showed that



child’s left hand, child’s right hand, and parent’s left hand
were more centrally located when targeted by gaze compared
to their overall distributions (p < .05), while the parent’s right
hand location did not change when targeted by gaze (p = .48).

Discussion

Hands are an important visual stimulus. One’s own hands
are relevant for guiding reaching actions and manipulating
objects (Hayhoe & Ballard, 2005; Franchak et al., 2011),
while the hands of others can convey information about the
attention and goals of social partners (Olofson & Baldwin,
2011; Ullman, Harari, & Dorfman, 2012). But for toddlers
to learn from hands, they must be able to see them. Here,
we demonstrate that for toddlers playing with adults, hands
are frequently in view. However, what infants see depends
on where they actively point their heads: the resulting spatial
constraints (e.g., child’s hands being low in the field of view)
mean that children’s own hands are in view less often than
their parents’ hands. Consequently, children overtly attend to
parents’ hands more often than their own hands. Moreover,
we show that when children fixate on hands, they do so more
often when hands are centrally located in their fields of view,
suggesting that children move their heads to bring visual tar-
gets into the center of their visual fields. Most likely, children
coordinate their eyes and heads to focus on areas relevant to
the task at hand, looking down towards their own hands when
reaching and looking up towards their parents’ hands when
parents present objects (Yu & Smith, 2013).

Future Directions

There are two major directions that we are exploring in future
work. First, we want to improve the performance of our hand
tracking algorithm. Towards this goal, we are working on
probabilistic frameworks that will allow us to jointly take the
spatial configurations of all hands into account when deciding
on a hand label. Better performance will allow us to evalu-
ate more participants in the future to further validate these
results in a larger sample. Second, we want to take advantage
of the idea that hands can be useful clues towards predicting
overt visual attention in children by building models that at-
tempt to predict children’s eye gaze. We briefly experimented
with very simple models that predict the child’s gaze loca-
tion based on the most visualy dominant hand in view and
achieved accuracies that could compete with saliency-based
predictions on our data (Bambach, Crandall, & Yu, 2013).
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