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ABSTRACT

Climate models that predict polar ice sheet behavior require
accurate measurements of the bedrock-ice and ice-air bound-
aries in ground-penetrating radar imagery. Identifying these
features is typically performed by hand, which can be tedious
and error prone. We propose an approach for automatically
estimating layer boundaries by viewing this task as a proba-
bilistic inference problem. Our solution uses Markov-Chain
Monte Carlo to sample from the joint distribution over all
possible layers conditioned on an image. Layer boundaries
can then be estimated from the expectation over this distri-
bution, and confidence intervals can be estimated from the
variance of the samples. We evaluate the method on 560
echograms collected in Antarctica, and compare to a state-of-
the-art technique with respect to hand-labeled images. These
experiments show an approximately 50% reduction in error
for tracing both bedrock and surface layers.

Index Terms— Polar Science, Radar Imagery, Bedrock
and Surface Layers, Probabilistic Graphical Models

1. INTRODUCTION

Observing the structure and dynamics of the polar ice sheets is
critical for developing accurate climate models. Glaciologists
have traditionally had to drill ice cores in order to observe
the subterranean structure of an ice sheet, which is a slow
and labor-intensive process. Fortunately, ground-penetrating
radar systems have matured to allow surveying large areas
of ice from aerial and ground vehicles with minimal human
intervention.

Figure 1 presents an example of an echogram produced
by the Multichannel Coherent Radar Depth Sounder System
of the Center for Remote Sensing of Ice Sheets (CReSIS) [1].
This echogram is a virtual cross-section of the ice, where the
horizontal axis is distance along a flight line and the ver-
tical axis is vertical distance (depth) from the plane. The
echograms reflect a radar’s scattering properties and can be
used to estimate an ice sheet’s depth (i.e. the distance from
the bedrock to the line near the top of the echogram, which is
the ice surface) and the topography of the bedrock beneath the

Fig. 1. Sample radar echogram of an ice sheet, including the
surface (very dark line near the top) and bedrock (dark erratic
line near the middle) layer boundaries, along with weaker re-
turns from contiguous layers of ice between the two.

ice (the dark erratic line near the middle of the figure). These
observations can be used as input into glaciological models to
forecast ice sheet behavior over time.

Ground-penetrating radar has allowed for data to be col-
lected across vast areas of ice, but analyzing it remains a chal-
lenge and is typically done by hand. A few recent papers
have studied how to use image processing and computer vi-
sion techniques to determine layer boundaries automatically
or semi-automatically from echograms [2, 3, 4, 5, 6, 7, 8,
9, 10], but this is a hard problem because of the high de-
gree of noise, the often faint layer boundaries, and confusing
linear structures caused by signal reflections and clutter. In
fact, even human annotators produce diverging estimates of
the boundaries in many cases. We thus need new techniques
which combine together weak image cues, reasoning explic-
itly about uncertainty in both the evidence and the resulting
layer boundary estimates.

In this paper, we pose layer identification as an infer-
ence problem on a statistical graphical model, building on
the approach introduced by Crandall et al [11]. The prob-
abilistic framework allows for multiple sources of evidence
to be integrated in determining layer boundary estimates (as
opposed to, for instance, using an edge detection step, which
determines hard and irreversible decisions at an early pro-
cessing stage). We introduce several important contributions



to improve both the accuracy and utility of layer-finding.
Our technical innovation uses Gibbs sampling for performing
inference instead of the dynamic programming-based solver
of [11]. This allows us to strengthen the underlying model
and solve for layer boundaries simultaneously, yielding au-
tomatic layer detection results that are significantly better
than the approach in that paper. Moreover, the Gibbs sam-
pler produces explicit confidence intervals, thus giving bands
of uncertainty in the layer boundary locations. Since noise
and ambiguity in radar echograms are inevitable, we believe
that estimating confidence could be crucial in applications of
layer identification (e.g. when used as input to glaciological
models), and to our knowledge this is the first paper that has
demonstrated this capability.

2. RELATED LITERATURE

Several semi-automated and automated methods for identify-
ing subsurface features of ice have been introduced in the lit-
erature. The most related papers to our work have focused on
automated detection in terrestrial echograms. For example,
Freeman et al. [6] and Ferro and Bruzzone [4] investigated
how shallow ice features can be automatically detected in icy
regions on Mars. In other work, Ferro and Bruzzone used
echograms of the Martian subsurface to detect basal returns.
The subglacial identification problem was studied by Gifford
et al [2], who compared two primary approaches, namely an
active contour (‘snake’) model and an edge-based technique.
Ilisei et al. [5] developed a two-phase technique to exploit the
properties of a radar signal for generating a statistical map and
applying a segmentation algorithm. Although our application
focuses on detecting bedrock and surface layers, other stud-
ies use similar techniques to identify internal layers in radar
imagery. Approaches include Fahnestock et al. [8], Karlsson
and Dahl-Jensen [7], Sime et al. [9], Mitchell et al. [12], and
Panton [13].

Our approach is most closely related to Crandall et
al. [11], and we use a similar probabilistic framework here.
However, our model makes fewer assumptions, our inference
algorithm is able to solve for all layer boundaries simultane-
ously, and our experiments show a significant improvement
in quantitative accuracy compared to ground truth. Addition-
ally, our approach is able to characterize uncertainty of the
layer boundary estimates by calculating confidence intervals,
whereas the technique in [11] simply gives a single layer
boundary with no measure of certainty.

3. METHODOLOGY

An echogram is a 2D matrix which represents the scatter-
ing properties of the subsurface at each along-track coordi-
nate of the radar platform. Figure 1 shows an example of an
echogram from the CReSIS dataset [1]. Our task is to find two
key features in these echograms: the ice surface boundary (the

strong reflector near the top) and the bedrock boundary (the
dark reflector near the middle of the image).

3.1. Modeling layer boundaries

We want to estimate the location of layer boundaries by de-
termining their paths through the image. Assume that an
echogram has k layer boundaries (with k=2 in our case).
Given an echogram I of dimensionm×n, we wish to estimate
unknown variables L={L1, ..., Lk}, where Li={li1, ..., lin}
and lij denotes the row coordinate of layer i in column j.

We take advantage of the structure of this problem by pos-
ing it as a grid-shaped probabilistic graphical model. In this
framework, we are interested in estimating P (L1, ..., Lk|I),
the joint probability over the layer boundaries given the
echogram. Unfortunately, this distribution has an alarming
dimension of order O(mkn) so that computation and storage
is intractable even for small images. To address this problem,
we make three simplifying assumptions: (1) all echograms
are equally likely; (2) image characteristics are determined
by local layer boundaries; and (3) variables in L exhibit a
Markov property with respect to their local neighbors.

Under the first assumption, the joint distribution can be
factored into a product according to Bayes’ Law,

P (L1, ..., Lk|I) ∝ P (I|L1, ..., Lk)P (L1, ..., Lk). (1)

This decomposition reduces the full joint into two intuitive
distributions: P (I|L1, ..., Lk) captures how well the im-
age data can be explained by a set of layers L1, ..., Lk, and
P (L1, ..., Lk) captures prior knowledge about the boundaries,
like that they are smooth and do not intersect.

The second assumption implies that parts of the image
not near the layer boundaries are generated by noise, so we
need only model pixels near boundaries. Thus we can factor
P (I|L1, ..., Lk) into a product over layers and columns,

P (I|L1, ...Lk) =

k∏
i=1

n∏
j=1

P (I|li,j). (2)

Since boundaries are dark edges, we model the right hand
term as a product of gradient magnitude and image intensity,

P (I|li,j) ∝ |∇I(li,j , j)| · (1− I(li,j , j)), (3)

where |∇I(x, y)| is the gradient magnitude at coordinate
(x, y) of the image, and we assume that pixel values have
been scaled such that I(x, y) ∈ [0, 1]. We approximate gradi-
ent magnitude using finite differences on a 5× 5 window.

The third assumption simplifies the problem by assuming
the graphical model has the property that each node li,j is in-
dependent of the remaining variables in L given its immediate
neighbors in the graph. Under this assumption, we have,

P (L1, ..., Lk) ∝
k∏

i=1

n∏
j=1

P (li,j |N(li,j)) (4)



where N(li,j) is the set of directly connected nodes in the
graph (i.e. N(li,j) = {la,b | 1 = |a− i| and 1 = |b− j|}). We
define P (li,j |N(li,j)) as the product of independent vertical
and horizontal components. Along the same layer, li’s are
encouraged to be smooth by a zero-mean Gaussian which is
truncated to zero outside a fixed interval,

P (li,j |li,j−1)∝
{
N (li,j − li,j−1; 0, σ) |li,j − li,j−1|<φH

0 otherwise,
(5)

while a step function encourages layers not to overlap,

P (li,j |li−1,j) ∝

 0 li,j ≤ li−1,j
0.1 li,j − li−1,j < φV
1 otherwise.

(6)

This model is similar to [11] but with important improve-
ments. In [11], the vertical pairwise potentials are zero at
and above intersection points and uniform elsewhere. But
it is common in this data to see radar reflections of the sur-
face layer directly below the actual surface, so we add a
fixed-width low probability region directly below them to
reduce false bedrock detections on these reflections. Perhaps
more importantly, the model in [11] breaks these vertical
constraints in order to simplify inference by greedily solving
each layer conditioned on the previous one. We avoid doing
this, and our experiments show that this holistic inference
approach offers substantial improvement in accuracy.

3.2. Statistical inference

The model defined by equations (1), (2), and (4) is a first-
order Markov Random Field. Unfortunately, finding the val-
ues ofL that maximizes equation (1) is NP-hard in the general
case [14]. Rather than trying to solve this as an optimization
problem, we instead attempt to estimate functionals of the full
joint distribution via Gibbs sampling.

Gibbs sampling is a Markov Chain Monte Carlo (MCMC)
method which is capable of producing samplesX(1), ..., X(J)

from a distribution f(x) without requiring the ability to di-
rectly sample or even know the form of f(x) [15]. This is ac-
complished by iteratively sampling each variable conditioned
on the remaining variables. Pseudo-code for Gibbs sampling
is shown in Figure 2. This sampler provides a flexible frame-
work for generating samples of a complex distribution, as-
suming samples can be taken from usually simpler full con-
ditionals. The run-time complexity is O(mJ), but in practice
depends on the ease of sampling from the full conditionals.

It can be shown via Bayes Law and the independence as-
sumptions in equations (2) and (4) that the full conditionals
for each lij can be computed easily,

P (lij |I,N(lij)) = P (I|lij)P (lij |N(lij)). (7)

As the domain of lij is discrete and finite, sampling from this
conditional is well-defined. As an additional optimization, we

1: Initialize X(0) = {x1, ..., xm};
2: j = 1;
3: while j < J do
4: X(j) = X(j−1);
5: for all xi in X(j) do
6: x

(j)
i ∼ P (xi|X(j) − {x(j)

i });
7: end for
8: j = j + 1;
9: end while

Fig. 2. General algorithm for Gibbs sampling.

make use of the vertical and horizontal thresholds in equa-
tion (6) to sparsify the computation of P (lij |N(lij)), since
most entries are known to be zero. We apply the Gibbs sam-
pler to generate a sequence of samples L(B), ..., L(J) where
B is a burn-in time during which samples are discarded. This
is a common practice with MCMC methods to reduce sensi-
tivity to initial values. To predict the layer locations we take
the mean of our M = J − B samples, which approximates
the expectation of the joint distribution for large M ,

E [P (L1, ..., Lk|I)] = lim
M→∞

1

M

∑
L(i).

To produce confidence intervals around this mean, we use the
fact that the marginal distribution of a variable can be esti-
mated by discarding other variables in the sample, and take
the 2.5% and 97.5% quantiles.

4. EXPERIMENTAL RESULTS

We tested our layer-finding approach using a set of 826 pub-
licly available radar echograms from the 2009 NASA Oper-
ation Ice Bridge program, collected with the airborne Multi-
channel Coherent Radar Depth Sounder system of [1]. Each
echogram has a resolution of 700 by 900 pixels (where 900
pixels represents about 30km of data on the horizontal axis,
and 700 pixels corresponds to 0-4km of ice thickness on the
vertical axis). This dataset was used by [11] so we can di-
rectly compare the accuracy of the two techniques, and we
used the source code provided by the authors.

The images have ground-truth labels produced by human
annotators, but these labels are often quite noisy. For instance,
sometimes the annotators could not find a reasonable layer
boundary and simply “gave up” by not marking anything at
all. To decouple the error in the ground-truth from the method
evaluation, we removed images with incomplete ground truth
(including those with partially defined layers and those with
less than two layer boundaries). We ran our method on the
remaining 560 images. For each image, we collected 10,000
samples after a burn-in period of B=20,000 iterations.

Figure 3 shows results on three sample echograms, pre-
senting the output of our technique (including the confidence
interval) as well as the ground truth and baseline technique
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Fig. 3. Results on three sample echograms. Each pane in-
cludes the hand-labeled ground truth image (top-left), the out-
put of [11] (top-right), and then our output (bottom). Best
viewed in color.

Mean Error Median Mean Error
Approach Surface Bedrock Surface Bedrock

[11] 22.3 43.1 10.6 14.4
Ours 9.3 37.4 5.9 9.1

Table 1. Evaluation of our method on the test set. Error is
measured in terms of absolute column-wise difference com-
pared to ground truth, summarized with average mean devia-
tion and median mean deviation across images, in pixels.

of [11]. We present quantitative performance metrics in Ta-
ble 1. We measure accuracy by viewing ground truth and es-
timated layer boundaries as 1-D signals, and computing the
mean absolute deviation (in pixels) between the two. We
use two summary statistics: mean column-wise absolute error
over all images and the median of the column-wise mean ab-
solute errors across images. The first measures how well pre-
dicted layers match the ground truth, treating columns within
an image as uncorrelated, while the later metric recognizes
that high error in one column in an image is highly correlated
with the error in the remaining columns and looks at error
from a per-image viewpoint. Under both metrics, we outper-
form the method of [11] significantly, by decreasing the error
rate by about 44.3% for surface boundaries and 48.3% for
bedrock. Our technique is slower than [11] (about 17 seconds
per image), but since layer finding is trivially parallelizable
across images, we believe accuracy is much more important
than compute time in practice.

We also quantified how informative the confidence inter-
vals are by computing the percentage of ground truth layer
points that are contained within the estimated intervals. We
found that 94.7% of the surface boundaries and 78.1% of the
bedrock boundaries are within the intervals, for an overall per-
centage of 86.4%. The fact that this number is close to but less
than 95% reflects that our framework is a good but not perfect
model of layers in echogram images.

5. CONCLUSION

We proposed an automated approach to estimate bedrock and
surface layers in multichannel coherent radar imagery and
demonstrated its effectiveness on a real-world dataset against
the state-of-the-art. Our technique also produces confidence
interval estimates and we evaluated their correctness. We be-
lieve layer-finders that provide such confidences may improve
climate models by quantifying error in the input data.
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