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ABSTRACT

Understanding the structure of Earth’s polar ice sheets is im-
portant for modeling how global warming will impact polar
ice and, in turn, the Earth’s climate. Ground-penetrating radar
is able to collect observations of the internal structure of snow
and ice, but the process of manually labeling these obser-
vations is slow and laborious. Recent work has developed
automatic techniques for finding the boundaries between the
ice and the bedrock, but finding internal layers – the subtle
boundaries that indicate where one year’s ice accumulation
ended and the next began – is much more challenging be-
cause the number of layers varies and the boundaries often
merge and split. In this paper, we propose a novel deep neu-
ral network for solving a general class of tiered segmentation
problems. We then apply it to detecting internal layers in po-
lar ice, evaluating on a large-scale dataset of polar ice radar
data with human-labeled annotations as ground truth.

Index Terms— Tiered Image Segmentation, Deep Neural
Network, Internal Ice Layer Tracking

1. INTRODUCTION

Understanding the impacts of global climate change begins
at the north and south poles: as the earth warms and the vast
polar ice breaks apart and melts, sea levels will rise and ab-
sorb more solar energy, which in turn will cause the Earth
to warm even faster [1]. To predict and potentially mitigate
these changes, glaciologists have developed models of how
polar ice and snow will react to changing climates. But these
models require detailed information about the current state of
the ice. While we may think of polar ice sheets as simply
vast quantities of frozen water, in reality they have important
structure that influences how they will react to rising temper-
atures. For example, deep beneath the ice is bedrock, which
has all the same diverse features as the rest of the Earth’s
surface – mountains, valleys, ridges, etc. – that affect how
melting ice will behave. The ice sheets themselves also have
structure: snow and ice accumulate in annual layers year af-
ter year, and these layers record important information about
past climatological events that can help predict the future.

To directly collect data about the structure of ice requires
drilling ice cores, which is a slow, expensive, and extremely
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Fig. 1. Given an echogram from ground-penetrating radar
over polar ice, we automatically estimate the number and po-
sition of internal ice layers. Left figure is adapted from [3].

laborious process. Fortunately, ground-penetrating radar sys-
tems have been developed that can fly above the ice and col-
lect data about the material boundaries deep under the surface.
This process generates radar echograms (Fig. 1), where the
vertical axis represents the depth of the return, the horizon-
tal axis corresponds to distance along the flight path, and the
pixel brightness indicates the amount of energy scattered from
the subsurface structure. However, the echograms are very
noisy and typically require laborious manual annotation [2].

Most automatic techniques for finding layers in these im-
ages only consider the ice-air and ice-bedrock boundaries,
which are the most prominent [4, 5, 6, 7, 8]. A much more
challenging problem is to identify the “internal” layers of the
ice and snow caused by annual accumulation. At first glance,
solving this problem may seem like a straightforward appli-
cation of traditional computer vision techniques. However,
approaches based on edge detection do not work well because
the layer boundaries are subtle, the noise characteristics vary
dramatically, and the number of visible layers changes across
different regions of ice. Unlike most segmentation problems
in computer vision, the layers here do not correspond to “ob-
jects” with distinctive colors or textures.

Nevertheless, our problem can be viewed as a gen-
eralization of the tiered scene segmentation problem [9].
Tiered segmentation partitions an image into a set of regions
{r1, r2, ..., rn} such that in each image column, all pixels be-
longing to ri are above (have lower row index than) all pixels
corresponding to rj for i < j. Felzenswalb and Veksler [9]
solved this problem using energy minimization with dynamic
programming, but they assumed no more than three distinct
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labels per column because their inference time was exponen-
tial in the number of labels.

In this paper, we revisit tiered labeling using deep learn-
ing, and we consider a more challenging problem in which the
number of labels is large and unknown ahead of time. We pro-
pose a novel deep neural network which performs the tiered
segmentation in two stages. We first use a 2D convolutional
network (CNN) to simultaneously solve three problems: de-
tecting the position of the top layer, roughly estimating the
average layer thickness, and estimating the number of visible
layers. Propagating the estimated first layer downward using
the estimated thickness gives a rough approximation of the
tiered segmentation. Then we refine the pixel-level bound-
ary positions using a recurrent neural network (RNN) to ac-
count for differences across different layers. We evaluate our
method on internal ice layer segmentation on a large-scale,
publicly-available polar echogram dataset. Experimental re-
sults show that our approach significantly outperforms base-
line methods, and is especially efficient on multi-layer detec-
tion. Beyond polar ice, our technique is general and can be
applied to tiered segmentation problems in other domains.

2. RELATED WORK

Crandall et al. [4] detected two specific types of layer bound-
aries (ice-air and ice-bed) in echograms using discrete energy
minimization with a pretrained template model and a smooth-
ness prior. Lee et al. [5] proposed a more accurate method us-
ing Gibbs sampling from a joint distribution over all candidate
layers, while Carrer and Bruzzone [10] further reduced the
computational cost with a divide-and-conquer strategy. Xu et
al. [6] extended the work to estimate 3D ice surfaces using a
Markov Random Field (MRF), and Berger et al. [11] followed
up with better cost functions that incorporate domain-specific
priors. More recent work has applied deep learning. Kaman-
gir et al. [8] detected ice boundaries using convolutional neu-
ral networks applied to wavelet features. Xu et al. [7] pro-
posed a multi-task spatiotemporal neural network to recon-
struct 3D ice surfaces from sequences of tomographic images.
However, all of this work focuses on detecting a small, known
number of layer boundaries (typically two) and thus is not ap-
propriate for internal layers, because the number of visible
internal layers varies and may be quite large.

Very recent work, contemporaneous to ours, has consid-
ered the internal layer detection problem. Varshney et al. [12]
treat the problem as semantic segmentation, while Yari et
al. [13] classify pixels into layer boundaries or not, which
is a binary classification problem. Those papers require post-
processing steps either to smooth the inconsistent labels be-
tween layers or to specify the layer indices.

Our problem can be thought of as a more general ver-
sion of the tiered segmentation problem [9] proposed by
Felzenswalb and Veksler, who presented an algorithm based
on dynamic programming. However, their solution required

the number of tiers (labels) to be fixed ahead of time to a small
number (3) because their inference was exact and exponential
in the number of labels, and used hand-crafted features. In
this paper, we propose a new approach to a more general ver-
sion of the tiered segmentation problem, in which the number
of labels can be large and unknown. Our technique combines
convolutional and recurrent neural networks for counting and
detecting an arbitrary number of layer boundaries.

3. METHODOLOGY

Given a noisy radar echogram I , which is a 2D image of size
1×H ×W pixels, our goal is to localize N internal ice layer
boundaries and exactly one surface boundary between the ice
and air. The output thus should be N+1 boundaries. We need
to estimate both the number of boundaries N (which varies
from image to image, although our implementation assumes
N < 30) and all the boundary locations based on noisy and
ambiguous data.

Our technique encodes the physical constraints of this
tiered segmentation problem. First, since the labeled re-
gions correspond to physical layers, layer boundaries can-
not cross; more precisely, we partition the image into re-
gions {r1, r2, ..., rn} such that in each image column, all
pixels belonging to ri are above all pixels corresponding to
rj for i < j. Second, we assume that adjacent boundaries
are roughly parallel, which is reasonable since the amount
of snow or ice that falls in any given year is roughly consis-
tent across local spatial locations. Finally, we assume that
the thickness of different layers is roughly the same at any
given spatial location, which is reasonable since the amount
of snow or ice is similar across different years. These are all
rough, weak assumptions, and our model is able to handle the
significant deviations from them that occur in real radar data.

We address this problem using two main steps, follow-
ing the intuition that a human annotator might use: first do
a rough top-down segmentation of the image to incorporate
global constraints on the layer structure, and then use that
rough segmention to do a bottom-up refinement of the layer
boundaries. More specifically, we first design a triple-task
Convolutional Neural Network (CNN) model to estimate the
number of ice layers N̂ , the location of the top layer F̂ (en-
coded as a W -d vector indicating the row index for each col-
umn of the image), and the average thickness of all layers (the
average vertical gap between boundaries) in the echogram.
The top boundary is typically quite prominent since it is be-
tween air and ice, and provides a strong prior on the shape of
the much weaker boundaries below. Second, we design a Re-
current Neural Network (RNN) to estimate ˆGapM , an N×W
matrix encoding the thickness (gap between adjacent bound-
aries) for each layer at each column, based on the estimates in
the first step.

To generate the final segmentation, we combine F̂ and
ˆGapM according to N̂ to generate output M̂ which is a (N +
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Fig. 2. Architecture of our model for detecting internal ice layers in radar echogram images. Through a combination of CNN
and RNN networks, we estimate both the number of layers and the boundaries of each layer.

1) ×W matrix. Each element in M̂ indicates the row index
for a given boundary at a given column in the input I .

3.1. Triple Task CNN (CNN3B)

Our first step applies a three-branch Convolutional Neural
Network (CNN) to roughly estimate the surface boundary lo-
cation, the number of layer boundaries, and the average thick-
ness of each internal layer across the echogram. Fig. 2 shows
our CNN architecture, which was inspired by Xu et al. [7] but
with significant modifications. Our model takes a 2D image
I as input. Then we use three shared convolutional blocks,
each of which is followed by max pooling operations. The
shared convolutional blocks are used to extract low-level fea-
tures for the next three branches, because similar evidence is
useful for estimating the first layer, the number of layers, and
the average thickness.

The model then divides into three branches. The first
branch estimates the position of the surface layer, and uses
six convolutional layers for modeling features specific to the
first layer and one fully connected layer to generate out-
puts F̂ = {f̂1, f̂2, · · · , ˆfW }. Each element represents the
row coordinate of the first layer within that column. The
ground truth vector F = {f1, f2, · · · , fW } is generated from
the top boundary of the human-labeled ground truth MN =
{mN,1,mN,2, · · · ,mN,W }. The loss function for estimating
the first layer uses an L1 Manhattan distance to encourage the
model’s output to agree with the human-labeled ground truth,

Lfl =
1

W

W∑
w=1

∣∣∣f̂w − fw

∣∣∣ . (1)

The second branch predicts the number of ice layer bound-

arise, and includes six convolutional layers and three fully
connected layers. We view this as a classification problem, so
this branch produces a vector v which is a probability distribu-
tion over a discrete set of possible numbers of boundaries. In
our experiments, we assume N < 30, so v is 31-dimensional.
The ground truth is the number of labeled boundaries N in the
human-annotated ground truth of the image. Cross-entropy
loss is used during training,

Lnumber = − log

(
exp(v[N])∑
j exp(v[j])

)
. (2)

The third branch roughly estimates the average thickness
(gap) of all the layers in the echogram, and follows the same
general design as the first branch but with a single scalar out-
put from the final fully connected layer. The loss calculates
the absolute value between the output ∆̂ and the ground truth
∆,

L∆ =
∣∣∣∆̂−∆

∣∣∣ . (3)

Finally, our CNN loss function combines the three branches,

L = Lfl + Lnumber + L∆. (4)

We use VGG16 [14] as the network backbone.

3.2. Multiple Gap RNN

Having roughly estimated the global structure of the
echogram in the last section, we next use an RNN to gen-
erate a more accurate gap (thickness) value for each layer in
the echogram. We use Gated Recurrent Units (GRUs) [15],
which require less computational cost and are easier to train
than LSTMs [16].
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As shown in Fig. 2, our model has one hidden layer,
wherein each GRU cell takes feature map AvgF generated be-
fore the fully connected layer of our Triple Task CNN model’s
third branch and the output of the previous GRU cell as inputs,
and produces W real-valued numbers indicating the predicted
gap between layer boundaries within each column of the data.
AvgF is projected to the size of the GRU hidden state with
a fully connected layer before GRU takes it as input. During
training, the GRU cell is operated for N iterations, where each
iteration n estimates the gap between layer n+ 1 and layer n.
In a given iteration n, the GRU cell takes the projected AvgF
as input. The GRU cell outputs a sequence of hidden states
{h1, h1, · · · , hn} with iteration n ∈ [1, N ], and each hidden
state hn is followed by a fully-connected layer to predict gap
value ˆGapMn. We use L1 Manhattan distance to supervise
the model to predict ˆGapM according to the human-labeled
ground truth GapM ,

LGapM =
1

N

1

W

N∑
n=1

W∑
w=1

∣∣∣ ˆGapMn,w −GapMn,w

∣∣∣ . (5)

3.3. Combination

We combine our Triple Task CNN and Multiple Gap RNN to
predict the number of internal ice layer boundaries and their
positions in the input image I . The RNN uses general features
as shown in Fig. 2 to initialize the GRU’s hidden state and
takes an average feature map AvgF as input. Based on the
first layer output and the number of layers from the Triple
Task CNN, our model generates the first boundary M0 (W -d
vector) in our result M̂ . We then apply the layer gap output
GapM predicted by our multiple Gap RNN according to the
first layer result,

Mi = Mi−1 + GapMi, i ∈ (1, N), (6)

where N is number of layer boundaries. In addition, Mi and
GapMi are both W -d vectors. For each image, we compute
all Mi’s to create M̂ which is a (N + 1,W ) matrix, and com-
pare it with ground truth M to evaluate our model.

4. EXPERIMENTS

4.1. Dataset

We use the annual ice layer dataset collected by the Center
for Remote Sensing of Ice Sheets (CReSIS) at the University
of Kansas and the National Snow and Ice Data Center at the
University of Colorado [17]. The data is collected by ultra-
wideband snow radar operated over a frequency range from
2.0 to 6.5 GHZ, and consists of 17,529 radar images with
human-labeled annotations that identify the positions of in-
ternal ice layers. Formally, our task is to detect all internal ice
layers M̂ in a given single-channel image I . Each element in
M̂ indicates the row coordinate (in the range [1, H], where H
is image height) of an ice layer for a given column.

Preprocessing. We resize all input images to 300 × 256
by using bi-cubic interpolation. We normalize the grayscale
pixel values by subtracting the mean and dividing by the stan-
dard deviation (both of which are calculated from the training
data). Following [7], we also normalize the ground truth row
labels to a coordinate system spanning [−1, 1] in each image.
We also remove input images that have missing data.

4.2. Implementation Details

We use PyTorch to implement our model and do the training
and all experiments on a system with Pascal Nvidia Titan X
graphics card. We randomly choose 80% of images for train-
ing and 20% for testing. The Adam optimizer with default
parameters is used to learn the CNN parameters with batch
size of 16. The training process is stopped after 30 epochs,
starting with a learning rate of 10−4 and reducing in half ev-
ery 10 epochs. The RNN training uses the same optimizer,
update rule, and batch size as the CNN’s, but initial learning
rate is set to 10−3.

4.3. Evaluation Metrics

Prior work has used mean absolute error in pixels between
predicted and ground truth layers [4, 5], a familiar evalua-
tion metric in signal processing applications. However, in our
problem of internal ice detection, the number of layers is un-
known, which means the evaluation metric must capture both
the accuracy of estimated layer count and the localization ac-
curacy of the layers. Prior work on internal layer detection
has typically been evaluated qualitatively [18].

We thus introduce two quantitative, objective evaluation
approaches for the tiered segmentation problem. Our first
evaluation protocol assumes that the correct number of layers
is known via an oracle, and then measures mean absolute error
in pixels. Assuming that the correct number of layers is given
is useful both for isolating the accuracy of layer localization,
and for allowing comparison with models that are not able to
estimate layer counts. To evaluate the accuracy of both the
layer count and layer boundaries, we propose layer-AP based
on average precision. For each estimated layer, we search
through the ground truth layers to find the closest match ac-
cording to mean absolute error. Each ground truth layer is
only allowed to match one estimated layer. Then we define
a set of threshold values tl. For each threshold, we count the
number of estimated layers which have a mean absolute er-
ror in pixels under the threshold, and call this the number of
matches mi for that threshold. In particular, the layer average
precision is computed as,

layer-AP =
1

l

l∑
i=1

mi

N + 1
, (7)

where N+1 is the number of layer boundaries (N is the num-
ber of gaps between boundaries), and l indicates the number
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of thresholds. In this work, we use 10 different thresholds and
set tl = [1, 4, 7, 10, 13, 16, 19, 22, 25, 27], assuming input im-
ages are in size of 300× 256.

4.4. Baselines

We are not aware of any existing work that solves the problem
we consider here: existing fully-automatic approaches to the
tiered segmentation problem assume the number of layers is
no greater than two and is known ahead of time. We thus
develop some baseline models to compare our results against.

Crandall et al. [4] proposed a technique based on graph-
ical models to find layer boundaries, which we call Sequen-
tial. However, they assume exactly two layer boundaries be-
cause the running time is exponential in the number of layers.
Here, we adapted it to our problem by using an oracle to de-
termine the number of layers (by looking at ground truth),
and then running sequentially to find each layer one-by-one.
Naive CNN uses the VGG16 [14] as backbone which directly
predicts a fixed number of internal layers by producing a label
matrix in one-shot. RNN30 models the dependencies in the
vertical direction: given the estimated boundary for a given
layer and previous layers, it predicts the boundary for the sub-
sequent (next-deeper) annual layer. RNN256 is a baseline
that uses a recurrent neural network (RNN) to model sequen-
tial dependencies across columns, assuming a fixed number
of layers. CNN2B is a simpler version of our model that uses
only two branches, one to predict the top layer (the air and ice
boundary), and one to predict the average gap between layers.
CNN3B is a version of our model with all three branches,
but without the RNN refinement. CNN3B+RNN is our full
model described above.

4.5. Evaluation Results

Quantitative results are presented in Table 1 and 2 in terms
of mean absolute error and layer-AP, respectively. In each ta-
ble, we present two sets of results: one in which the number of
layers is known ahead of time by an oracle (i.e., by consulting
the ground truth), and one in which it is predicted automati-
cally. Note that only the techniques that use CNN3B are able
to estimate the number of layers automatically, which is why
the other results are listed as missing in the table. For calculat-
ing mean absolute error when models incorrectly estimate the
number of layers, we pad either the ground truth or the output
(whichever has fewer layers) with extra layers consisting of
zero vectors to penalize these incorrect estimations.

Comparing with other models in Table 1 and 2, we ob-
serve that our combination of CNN3B and RNN models sig-
nificantly outperforms all baselines in terms of both mean
average error and layer-AP. Our two models CNN3B and
CNN3B+RNN have the ability to estimate the number of in-
ternal ice layers, and reach 85.2% accuracy on this layer
counting task, which is why their accuracy decreases only

Mean Error (in pixels) ↓
# layers from oracle # layers estimated

Sequential [4] 88.98 -
Naive CNN 24.32 -
RNN30 21.79 -
RNN256 20.20 -
CNN2B 11.94 -
CNN3B 7.91 9.27
CNN3B+RNN 6.96 8.73

Table 1. Evaluation results by measuring the error in terms
of the mean absolute column-wise difference compared to
ground truth, in pixels.

layer-AP ↑
# layers from oracle # layers estimated

Sequential [4] 0.059 -
Naive CNN 0.183 -
RNN30 0.218 -
RNN256 0.254 -
CNN2B 0.635 -
CNN3B 0.843 0.822
CNN3B+RNN 0.882 0.853

Table 2. Evaluation results by measuring the layer average
precision with thresholds compared to ground truth.

slightly when the number of layers is not provided by the or-
acle. Our model CNN3B+RNN shows the best results of all
other baselines, even when our model must estimate the num-
ber of layers and the baselines know it from the oracle.
Qualitative results are shown in Fig. 3. The first column
shows the human annotated layers, while the second column
shows the result generated by one of our baselines, CNN3B.
The results of this baseline roughly agree with the ground
truth, but all layers except the first show different degrees of
inaccurate localization compared with the human annotations.
The third and fourth columns show the results with and with-
out the layer number oracle. Since our CNN3B+RNN model
is highly accurate at estimating the number of layers, the out-
put with and without the oracle are nearly the same. We pro-
vide additional sample results in supplementary material.

As shown in the examples, our model only needs the input
image to generate results that are very close to human anno-
tations in most cases. The improvement between CNN3B and
CNN3B+RNN indicates that the RNN contributes to our final
result even though the RNN30 and RNN256 baselines fail to
work well on their own. The results show that both steps of
our model are important to achieve high performance.

5. CONCLUSION

We have considered a generalization of the tiered segmen-
tation problem and apply it to a problem of great societal
consequence: automatically understanding the internal layer
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(a) Human-labeled
Indicating GT number of layers

(b) CNN3B
w/ GT number of layers

(c) CNN3B + RNN
w/ GT number of layers

(d) CNN3B + RNN
w/o GT number of layers

Fig. 3. Sample results, showing (a) ground truth, (b) CNN3B output with ground truth number of layers, (c) CNN3B+RNN with
ground truth number of layers, and (d) CNN3B+RNN with estimated number of layers.

structure of the polar ice sheets from ground-penetrating radar
echograms. We show that our approach can effectively esti-
mate arbitrary numbers of snow or ice layers from noisy radar
images. Experimental results on a challenging, publicly-
available dataset demonstrate the significant improvements
over existing methods.
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