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Abstract—The experiment reported here investigates the perception of orientation of color photo-
graphic images. A collection of 1000 images (mix of professional photos and consumer snapshots)
was used in this study. Each image was examined by at least � ve observers and shown at varying
resolutions. At each resolution, observers were asked to indicate the image orientation, the level of
con� dence, and the cues they used to make the decision. The results show that for typical images,
accuracy is close to 98% when using all available semantic cues from high-resolution images, and
84% when using only low-level vision features and coarse semantics from thumbnails. The accuracy
by human observers suggests an upper bound for the performance of an automatic system. In addi-
tion, the use of a large, carefully chosen image set that spans the ‘photo space’ (in terms of occasions
and subject matter) and extensive interaction with the human observers reveals cues used by humans
at various image resolutions: sky and people are the most useful and reliable among a number of
important semantic cues.

Keywords: Image orientation; human observer; semantic cues; low-level cues; photo space; image
resolution.

1. MOTIVATIONS

The rapid growth of digital imaging has led to an increase in image-related tasks
such as enhancement, manipulation, compression, understanding, organization, and
retrieval. Knowledge of the correct image orientation can be of great importance
for these tasks. Automatic image orientation can drastically reduce the human
effort otherwise needed to orient the images for viewing (either on a computer
monitor, a handheld device, or a TV) or for organizing an album. In addition, many
automatic algorithms for object recognition, scene classi� cation, and content-based
image retrieval either require a priori knowledge of the correct image orientation,
or can perform signi� cantly better if image orientation is known. For example,
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face detection algorithms (Schneiderman and Kanade, 1998) usually assume the
image is in an upright orientation. Otherwise, all four possible image orientations
have to be examined, increasing the computation time and false positive detection
rate. Most sky detection algorithms are designed to take advantage of the fact that
sky often appears as a blue region at the top of an image, with the exception of
the clear blue sky detection method by Luo and Etz (2002). Semantic features are
becoming increasingly important for content-based image retrieval and annotation
(Saber et al., 1996; Naphade and Huang, 2000; Smeulders et al., 2000). For
classi� cation of images into indoor-outdoor (Szummer and Picard, 1998), sunset,
beach, � eld, fall foliage, mountain, and urban scenes (Vailaya et al., 1998), images
are assumed to be in the upright orientation so that scene layout of prototypical
scenes can be learned through training.

1.1. Image orientation in computer vision literature

Automatic image orientation detection is a relatively new research area in computer
vision. Most of the early work focused on documents, and success was largely
due to the constrained nature of the problem (text cues). For natural images, the
problem is considerably more challenging. Until recently (Vailaya et al., 1999;
Wang and Zhang, 2001), there had been little work on automatic image orientation
detection for natural images. Humans appear to use scene context and semantic
object recognition to identify the correct image orientation. However, it is dif� cult
for a computer to perform the task in this way because current object recognition
algorithms are extremely limited in their scope and robustness. Out of millions
of possible objects that can appear in a natural scene, robust algorithms exist for
only a handful of objects (e.g. face, sky). To date, scene classi� cation is often
approached by computing low-level features (e.g. color, texture, and edges) that
are processed with a learning engine to directly infer high-level information about
the image (Szummer and Picard, 1998; Vailaya et al., 1999; Wang and Zhang,
2001). Recently, a new approach was proposed that combines low-level features
with detectable semantic scene content in order to improve the accuracy of indoor-
outdoor image classi� cation (Luo and Savakis, 2001).

1.2. Object orientation in psychology literature

While a small portion of the psychology literature involves human perception of
orientation of gratings (Dakin et al., 1999; Mareschal et al., 2001), and recognition
of rotated letters and digits (Corballis et al., 1978; Jolicoeur, 1992), most of
the psychology literature involving orientation focuses on the interplay between
orientation and recognition of objects, speci� cally the effect of in-plane rotation
on the recognition of single objects represented by line drawings. Although this
literature is vast (e.g. Corballis et al., 1978; Braine et al., 1981; Maki, 1986;
Biederman, 1987; Tarr and Bulthoff, 1995 and 1998; Hamm and McMullen, 1998;
DeCaro, 1998; Jolicoeur et al., 1998; McKone and Grenfell, 1999; DeCaro and
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Table 1.
Relationship between the prior literature and the present study

Percept Task

Recognize object Infer orientation

Letters/digits Jolicoeur, Corballis Corballis
Line drawings Jolicoeur, Tarr, Maki, : : : DeCaro
Full-cue color Nicholson Our work

Reeves, 2000; DeCaro and Reeves, 2002; Lawson and Jolicoeur, 2003), there is no
general consensus in the means by which rotation affects object recognition.

The research consistently shows that humans show a greater response time when
recognizing rotated images and that this time is reduced with practice, as in later
stages (Jolicoeur, 1985). However, in the only study using full-cue color images
(i.e. photographs containing not only shape but also color, texture and shading),
Nicholson and Humphrey (2001) found this effect to be negligible.

In contrast to the great extent of literature on object recognition, few studies
have involved subjects inferring ‘object orientation’. Corballis et al.’s (1978)
experiments involved rotated letters, while De Caro’s (1998) involved rotated
line drawings of objects. Both gave evidence that object recognition precedes
orientation detection. We attempt to extend this work to unconstrained photographic
images. Drawing an analogy with the surprise effects witnessed by Nicholson and
Humphrey (2001) because of the additional cues available, we believe that our
work is not a trivial extension of Corballis et al. or of De Caro, but is novel. We
summarize the relationship between our work and the prior research in Table 1.

We are also interested in how human orientation of photographs is affected by
the semantic content of the image. While this problem has not been addressed in
the literature, the effects of semantic categorization and rotation upon recognition
speed of objects in line drawings has been studied. Vannucci and Viggiano (2000)
found that recognition speed of placed objects (e.g. desks) and animals, usually
seen in one, � xed orientation, does depend on the orientation of the image.
However, recognition speed of vegetables and unplaced objects (e.g. tools), which
are routinely seen in all orientations, is independent of orientation.

Other research has focused on the effects of orientation on naming objects at
various category levels, such as basic (e.g. dog), subordinate (e.g. poodle), and
superordinate (e.g. animal). Hamm and McMullen (1998) distinguished object
recognition at the basic level from that at the subordinate level, claiming that
only recognition at the subordinate level is orientation-invariant. Lloyd-Jones
and Luckhurst (2002) and Lawson and Jolicoeur (2003) rejected this due to
the simplicity of the experimental task in Hamm and McMullen (1998), and
demonstrated orientation effects even at the basic level.

This paper presents a psychophysical study on the perception of the orientation of
color photographic images. We emphasize that we have a different motivation than
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most psychophysical studies in general and those involving image orientation in
particular. Our interest is primarily in ‘what’ humans do with the visual information
presented to them, for the purpose of recognizing the correct image orientation,
instead of ‘how’ humans process such information.

Speci� cally, the study is designed to answer a number of questions. First, some
natural images are extremely dif� cult even for humans to orient correctly, or may
not even have a ‘correct’ orientation. Assuming that humans have almost unlimited
recognition power for the types of objects found in photographs compared to
the current computer vision systems, this study provides an upper bound for the
performance of an automatic system on a set of images reasonably representative
of the ‘photo space’ in terms of occasions and subject matters. Second, discrepant
detection rates based on purely low-level cues have been reported in the literature,
ranging from exceptionally high (»95%) in earlier work (Vailaya et al., 1999) to
more reasonable (»78%) in recent work with a higher degree of sophistication
(Wang and Zhang, 2001). The image databases used for the two studies are different
and we suspect that the high accuracy numbers reported in the earlier work might be
an artifact of the database used in that experiment. In other words, if most images
� t into some prototypes, such as ‘sky on top of grass’, a low-level feature-based
approach is expected to do well. This study allows us to put the reported results in
the correct perspective. Finally, the use of a large, carefully chosen image set that
spans the ‘photo space’ and extensive interaction with the human observers should
reveal the various cues used by humans at various image resolutions. These can be
used to design a robust orientation detection algorithm (Luo and Boutell, 2003).

In this study, images were shown at varying resolutions. On one hand, object
recognition is expected to be much harder (and impossible for some images) at the
lowest resolution and more likely as the resolution is increased. On the other hand,
we believe that once the image resolution reaches a certain level, higher resolutions
will not yield any additional bene� ts for a human to determine image orientation.
At each resolution, observers were asked to indicate the image orientation, the level
of con� dence, and the cues they used to make the decision. Cues were selected
from prede� ned low-level and semantic choices in a menu, or typed in if not in the
list. Observers were also asked to make a general statement on whether they used
the main subject, the background, the entire scene, or a unique object (e.g. labels
on a cereal box) in making the decision. Observers might also comment about the
scene or their decision process.

2. EXPERIMENT

As stated above, our motivation was to � nd out what humans can do with the visual
information provided to them to determine image orientation without putting any
limit on how they actually do that. Therefore, we designed each aspect of our
experimental to enable, rather than control, our human observers.



Psychophysical study of image orientation perception 433

2.1. Participants

Twenty-six observers (twenty males and six females) participated in the experiment.
Most of them were imaging scientists and technicians. Twenty-four of the observers
were aged 20–45 years and two were aged 45–60 years. All were regular users of
computers and had normal or corrected-to-normal vision, although this was not as
critical because our study allowed the observers to make adjustments for optimal
viewing and therefore did not require high acuity. No observers were rejected due
to outlier behaviors.

2.2. Stimuli and equipment

Image selection for any study is a non-trivial task. First, we need a suf� cient number
of images to draw statistically signi� cant conclusions. Second, we need to have
a representative set of images in terms of scene content because certain types of
scenes are easy to recognize (e.g. outdoor, sky over an open � eld) and not much can
be learned from them. However, if most of the images are dif� cult (e.g. � owers) or
do not have a preferred orientation (e.g. texture patterns) the study would be skewed
as well. Third, because each observer is asked to determine image orientation at
multiple resolution levels for multiple images, the amount of labor limits the number
of images that can be shown to each observer.

We used a total of 1000 images in order to have reasonably good coverage of
the ‘photo space’. It is also desirable to have a balance between professional
stock photos and amateur consumer photos. External research has concentrated
on stock photos, e.g. the Corel collection, which were taken with attention to image
composition and exposure. Such photos are more likely to fall into the prototypes
for which a learning engine can be effective. However, the validity of results
based on such data can be questionable when applied to general digital imaging
applications. Therefore, we decided to use 500 images from the Corel collection
and another 500 from a consumer database called JBJL. The Corel collection has
over 100 000 images in various categories such as sunset, coast, � eld, city, animal,
people, textures and patterns, etc. JBJL has 1870 images organized according to the
four seasons. Examples of the images can be found in Appendix B.

Table 2 shows a detailed breakdown of the images used in this study. Conscien-
tious effort was made to select a mix of easy and dif� cult images to cover the most
likely picture occasions and locations, including indoor and outdoor pictures and
pictures with and without people. Extremely challenging images (e.g. � reworks,
underwater, speci� cally collected textures and patterns, etc.) were avoided. A few
texture patterns came naturally from the random sampling of pictures in the speci-
� ed categories.

The photographic images were presented in the typical 3 : 2 aspect ratio of pho-
tographs (uncropped — see Note 1) on test displays comprised of various calibrated
and uncalibrated computer monitors attached to various PC and Sun workstations.
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Table 2.
Image data

Corel (500) Easy (150) Fields (30)
Mountains (30)
Alaska/California Coast (30)
National Parks (30)
Dawn/Dusk (30)

Hard (150) New York/Los Angeles (30)
Interior (30)
Christmas (30)
Japan/Rural Africa (30)
People/Indigenous People (30)

Other (200) Caribbean
Autumn
Automobile
Barns/Farms
Ski
Garden
Fishing
Animals (horses/ dogs/ cats)
Lakes/Rivers
Winter
City Signs

JBJL (500) Spring
Summer
Fall
Winter

Consistent with our motivation, we did not control viewing conditions, such as
viewing distance, screen brightness, color gamut, and room lighting.

2.3. GUI design

A tool with a graphical user interface (GUI) was used to conduct the experiment.
The tool presented the images to the observer in a sequence of increasing resolution.
The observer was instructed to take a ‘best’ guess early on and not to wait until
he was 100% sure. The GUI provided menus and text boxes that were used by
observers to indicate orientation decisions, con� dences, cues, and comments. The
GUI allowed the user to quit and restart at any time. The remainder of this section
describes the GUI in more detail.

2.4. Procedure

Because we were interested in what observers can do with visual information, the
procedure allowed them to manipulate the picture displayed on the screen in a
fashion virtually like holding a photograph in their hands to help them optimally
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utilize the information embedded in the pixels presented to them. The environment
was typical room lighting by normal in-the-ceiling � uorescent bulbs in an of� ce
without windows, although a few observers may have dimmed the lights somewhat
to reduce glare. All the images were pre-rendered to suit the color gamut of a
typical computer monitor (with gamma between 2.0 and 2.5). They were able to
adjust the brightness of an image on the monitor to see the details in the shadows
and highlights (we noted that brightness adjustment is not possible when holding
an actual photograph, but only 1.5% of the observations in this study were made
when the default brightness setting was changed). They were able to rotate an
image freely without having to keep track of the rotation. They were also allowed
to adjust the viewing distance freely in front of the monitor (typically between 8
to 20 inches) or even take the eyeglasses off. In addition, observers were able to
see zoomed/ enlarged versions of an image. However, to streamline the work� ow,
observers could not zoom an image unless there was a need for it, which was
indicated naturally by the con� dence level. In other words, if the con� dence was
lower than the maximum, the observer was presented with a higher resolution
version of the image (unless the maximum resolution was reached). Several menus
and text � elds were provided for observers to record their decisions, including:

Cue #1. This menu was used for recording the use of low-level cues. The pull-
down menu included none, color, texture, lines, and other. This was expected to be
useful at lower resolution levels.

Cue #2. This menu was used for recording the use of semantic-level cues. The
pull-down menu included none, face, people, animal, car, sky, cloud, grass, tree,
� ower, snow, water, road, ground, window, ceiling, furniture, building, bridge,
mountain, text, and other. This was expected to be useful at higher resolution levels.

Cue #3. This menu could be used to specify the use of additional cues, either
low-level or semantic-level. The pull-down menu included none, color, texture,
lines, face, people, animal, car, sky, cloud, grass, tree, � ower, snow, water, road,
ground, window, ceiling, furniture, building, bridge, mountain, text, and other.

Cue Type. We were interested in knowing whether an observer uses cues from
primarily the main subject, the background, or the whole scene. Further, image
orientation can sometimes be determined solely from a unique object. The pull-
down menu featured these four choices.

Orientation. Image orientation was de� ned as which side (north, east, west,
south, unknown, don’t care) of the image was upright relative to the currently
displayed image.

Con�dence. Con� dence (1: no clue — 5: absolutely sure) was considered very
important because we could gauge how the observer felt about the task and their
decisions. It was also a control signal for streamlining the work� ow.
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A typical observer work� ow is as follows. First, the GUI presents the observer
with an image at the lowest resolution .24 £ 36/, as shown in Fig. 1a. The observer
examines the image, selects con� dence, orientation, and cue choices from the drop-
down menus, optionally enters a comment, and presses the ‘accept’ button. If the
observer chooses a con� dence value less than the maximum (5), the GUI clears the
previous selections and presents the second resolution level .64 £ 96/. The second
resolution is a simple interpolation of the lowest resolution, i.e. no new information
is provided. We are interested in seeing if this version of the image can be of value.
The observer again selects cues from the pull-down menus and presses the ‘accept’
button. If the con� dence level is less than 5, the third resolution is then presented
(128 £ 192, Fig. 1b). This image contains a signi� cant amount of new information,
and we expect that most observers can determine the orientation of most images at a
high con� dence (>3) at this resolution. The GUI continues to display larger images
(256£384, 512£768) in sequence until either the � fth (maximum) resolution level
is reached or the user indicates a con� dence value of 5.

Note that it was possible that the con� dence level did not reach the highest level
for some challenging images even at the � fth resolution level. This information was
recorded but an observer was not prompted to see a higher resolution. All of the
inputs and interactions by each user on each image were stored in a log � le.

The set of 1000 images was randomly partitioned into 5 non-overlapping sets of
200 images. Each observer was presented with only one of these sets so the task
was more manageable. We later found that, although randomly partitioned, some
sets were indeed more challenging than others because all the observers on such
sets turned in lower scores. The session was always preceded by a block of 10–20
practice trials using images not used elsewhere in the study.

3. ANALYSIS

3.1. Observer con�dence

Intuitively, con� dence should increase monotonically with increasing image reso-
lution. The average con� dence level at each image resolution was calculated across
all observers and all images. Because observers may stop at a lower resolution
level for a particular image once their con� dence level reaches the maximum value,
we assigned the maximum con� dence value to the remaining higher resolution lev-
els, if any, even though they were never shown to the observer; we refer to the
resulting distribution as the ‘corrected’ one (vs. the raw, ‘uncorrected’ distribution
obtained if one does not perform this assignment). Our assumption is that if an
observer gave a con� dence of 5, he or she was absolutely sure of the orientation,
and would make the same decision if presented with a higher resolution image.
In the following analysis, only the corrected values will be presented unless the
raw values are also informative and explicitly stated. The distributions of aver-
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(a) (b)

Figure 2. Average con� dence levels (vertical axis) at each resolution level (horizontal axis):
(a) uncorrected distribution, (b) corrected distribution (see text for description).

(a)

(b)

Figure 3. (a) Frequency of different resolution levels as the � nal resolution, and (b) frequency of
incorrect orientation at the � nal resolution.
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age con� dence levels at each resolution level are shown in Fig. 2. Some observa-
tions are:
– The average con� dence reaches above 3 (out of 5) even at resolution level 1.
– Resolution level 2 does have bene� t (even though it is a simple interpolation of

level 1).
– Resolution level 3 represents the largest jump in con� dence.
– Con� dence approaches the maximum level at resolution level 4.
– Resolution level 5 adds little bene� t.

The uncorrected distribution is also informative. In Fig. 2a, the fact that the
average con� dence value for resolution level 5 is below those of resolution levels 3
and 4 suggests that the maximum resolution version was requested only for those
images with high dif� culty. In fact, we can see from the distributions of the � nal
resolution levels in Fig. 3a that
– Most (94%) of the time, the orientation task was completed at resolution levels

1–3.
– A thumbnail (resolution levels 1 and 2) is adequate 50% of the time.
– Resolution level 5 was only requested 1% of the time.

3.2. Orientation accuracy

Mean accuracy at the � nal resolution level was 96.2%. Figure 4 shows orientation
accuracy by zoom level, using both uncorrected and corrected values because both
are interesting. We note that 69.2% of observations at the � rst zoom level (24 £ 36/

were correct. The (corrected) accuracy at the second zoom level was 76.2%, a
signi� cant increase over zoom level 1. Note once again the � rst two zoom levels
share the same number of pixels and hence same amount of information; zoom level
two is simply a larger, interpolated version of zoom level one. It is interesting that
the larger image size caused a signi� cant increase in accuracy, even though no actual
additional information is contained in the larger image.

By the third resolution, the (corrected) accuracy is 91.6%, and 95.7% by zoom
level 4. The � nal resolution level helped very little, increasing (corrected) accuracy
to 96.2%. When resolution level 5 was actually needed, its uncorrected accuracy
was less than 80%. This is because only the most dif� cult images required viewing
at resolution level 5.

Figure 3b shows the frequency of each of the incorrect orientation decisions at
the � nal resolution level. The orientations have been translated such that ‘north’
is always the correct answer. We note that while the frequency of east and west
misorientations are approximately the same, south misorientations occur twice as
frequently. This suggests that when humans make orientation errors, they are more
likely to misorient by 180± (‘upside-down’) than by either of the 90± possibilities.
This actually occurred with both ‘landscape’ and ‘portrait’ pictures, indicating that
these errors could not have been avoided simply by using square pictures (see
Note 1).
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(a)

(b)
Figure 4. Accuracy by zoom level, (a) uncorrected and (b) corrected.

3.3. Observer con� dence vs. orientation accuracy

Next, we look at the relationship between con� dence (what observers think they
know) and accuracy (what the truth is). Because we have translated the relative
orientations of the displayed image back to absolute orientations, a translated ‘north’
decision is always correct. Overall for all observations, observers were indeed more
con� dent when they made the right decision (4.18) or declared the orientation as
‘don’t care’ (4.18), and less con� dent when they were wrong (2.77) or declared the
orientation as ‘unknown’ (2.84). As shown in Table 3, both con� dence and accuracy
increase as zoom level increases. There is extremely strong correlation between
con� dence and accuracy (a linear trend line has R2 D 0:9996!). Note that this is
also true for the ‘fake’ zoom level where no new information is provided. While
such exceptionally strong correlation may be somewhat accidental, high correlation
also exists when the data are broken down by sub-categories of scenes (as shown
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in Fig. 6), further indicating that human observers are well aware of their level of
accuracy across stimuli.

One challenge in computer vision and pattern recognition is for an algorithm
itself to produce a con� dence measure that is highly correlated with the dif� culty
the algorithm has on classifying a particular sample. This is extremely useful;
for example, the dif� cult images for an automatic algorithm can be prompted for
real-time human intervention or set aside for later human inspection. Alternatively,
easy images can be processed through a fast algorithm while dif� cult cases can be
presented to a more expensive and more accurate algorithm to maximize overall
throughput of a fully automatic system. Unfortunately, in addition to classi� cation
accuracy, computer vision also often lags behind humans in the arena of measuring
self-con� dence.

3.4. Accuracy across observers

At low resolutions, we found that orientation accuracy varied widely from observer
to observer. At the � rst resolution level, observer accuracy ranged from 55% to
91%, with a median of 75% and a standard deviation of 16.2%. This large variation
still existed even after we discarded an obvious outlier (12.9%). At the second
resolution level, the accuracies ranged from 74% to 94%, with a median of 82%
and a standard deviation of 13.3%. As resolution increases, the range of scores
across different observers continues to decrease. There are several explanations for
this result. Some observers may be better at using low-level (e.g. color) features
to determine image orientation than others. It is also possible that some observers
were simply more tenacious than others at low resolution levels (i.e. some observers
gave up quickly while others carefully examined low-resolution images to develop
a reasonable guess). Finally, environmental factors (e.g. small monitor size or poor
contrast settings) may have placed some observers at a disadvantage although the
monitor size was between 1700 and 2100 and the screen resolution was approximately
768 £ 1024.

Recall that zoom level 2 is simply a larger, super-sampled version of zoom
level 1 (i.e. the effective pixel resolution is the same) and hence contains no new
information. Note that this zoom level cannot be achieved by moving closer to the
monitor because the latter does not provide more pixels (albeit the same amount of
real information). Interestingly, the accuracy data show that some observers found
zoom level 2 to be very helpful, while others found it not helpful at all. About 28%
of observers showed almost no increase (i.e. <2 percentage points) in corrected

Table 3.
Improved accuracy and increased con� dence due to increase in resolution

Level 1 Level 2 Level 3 Level 4 Level 5

Con� dence 3.30 3.72 4.71 4.93 4.97
Accuracy 69.1% 76.2% 91.6% 95.7% 96.2%
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accuracy between zoom levels 1 and 2. For about 38% of observers, accuracy
increased between 2 and 10 percentage points in level 2, and for the remaining
33% of observers, corrected accuracy increased 10 percentage points or more. At
the � nal resolution level, observer accuracies ranged from 87% to 100%, with a
median of 97% and a standard deviation of 3.1%.

3.5. Orientation cues

The study was also intended to give an idea of how observers determine image
orientation. To capture this, observers were asked to specify which (primary) cue(s)

(a) (b)
Figure 5. Summary of cues used by observers, (a) overall and (b) by resolution level.
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they used in determining orientation for each image at each orientation. Observers
could choose from a list of pre-de� ned cues in a pull-down menu, or enter an
arbitrary cue into a free-form ‘comments’ � eld.

Figure 5a shows a histogram of the major cues mentioned. We see that people,
color, and sky were, by far, the most common cues; mentioned in 24.3%, 23.1%,
and 21.6% of observations, respectively. Other common cues included lines, trees,
texture, buildings, grass, and water. Figure 5b shows a histogram of the cues
mentioned by resolution level. As one might expect, color is mentioned frequently
at the � rst and second zoom levels, but is used much less frequently at higher
resolution levels. This suggests that at higher levels, other cues become more
important or easier to recognize. We note, however, that even at zoom level 5, color
was still mentioned in over 10% of the actual observations. Use of the two other
low-level cues, texture and lines, increased slightly as resolution increased. This
makes sense since texture features may not be apparent at low resolutions.

Like color, sky was mentioned frequently at the � rst zoom level (26.4% of
observations) but its use diminished with higher resolutions (6.4% of observations
at zoom level 5). This indicates that humans perform sky detection at low resolution
levels, but shift their focus to other cues as resolution increases. Another less
obvious but important fact is that the images that required viewing at higher
resolutions are less likely to contain sky. Grass, on the other hand, was mentioned
infrequently (<5% of observations) at all zoom levels. This is somewhat surprising,
because grass has been identi� ed as an important low-level semantic cue for
automatic orientation determination by computers. However, it is possible that
observers ignored grass because other more prominent cues (e.g. sky) were also
available.

Figure 5b shows that people are a very important cue in orientation determination.
In fact, people (including faces) were mentioned in 24% of observations at zoom
level 1, suggesting that a 24£36 image contains suf� cient information for humans to
recognize people (or, at least, to think they recognize people). This underscores the
importance of people detection in image orientation determination. In fact, several
observers noted that if they thought they recognized a person in an image, they
would give that cue priority over all other cues. In some cases, they noted that what
they thought was a person in a low resolution image turned out to be something
else entirely when viewed at higher resolutions. The people cue was mentioned
most often (30% of observations) at zoom level 3, and decreased as resolution
further increased. This suggests that zoom level 3 is suf� cient for most observers
to recognize people in most images. However, we must be cautious in making the
same statement for automatic face/people detection algorithms.

At zoom level 5, � owers were the most commonly mentioned cue (16% of
observations). It is expected that � owers, or at least their internal structures, cannot
be identi� ed easily at lower resolutions because of their usually small size in a scene.
Also, some scenes in our image set are close-ups of � owers, which are usually
symmetric, and lack many obvious orientation cues, e.g. stems, pedals, and ground.
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Because such images are dif� cult, observers tend to wait until higher resolutions to
make orientation decisions. Both of these factors may explain the high occurrence
of � owers at zoom level 5. It is noteworthy that � owers, even at zoom level 5, are
not necessarily reliable cues for image orientation.

Observers were also free to enter their own cues into a free-form ‘comments’
� eld (see Appendix A). In general, the written-in cues were mentioned much less
frequently than the prede� ned cues. Only ‘sun/moon’, ‘lamps’, and ‘shadows’ were
mentioned more often than the least-frequent prede� ned cue (‘bridges’).

3.6. Accuracy and con� dence by cue

Figures 6a and b show the con� dence and accuracy of observations by the cues
that were mentioned. The data in these � gures represent all observations at all

Figure 6. Mean con� dence and accuracy by cues mentioned, for all observations at all zoom levels.
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zoom levels. Note that the cues have been sorted in order of decreasing con� dence.
It is observed from Fig. 6a that the three low-level cues — color, lines, and texture
— have the lowest mean con� dences. This suggests that observers are more
con� dent of their decisions when semantic cues are available. Figure 6b suggests
that orientation decisions are also more accurate when semantic cues are available.
Except for ‘� ower’, the three low-level cues exhibited the lowest accuracies.

‘Car’ was the best cue in terms of con� dence and accuracy, with an average
con� dence of 4.7 and an accuracy of 99.4%. Animals, buildings, and people were
also high in both con� dence and accuracy. Interestingly, even though observers
were very con� dent of observations involving text (mean con� dence D 4.6), the
accuracy of text was among the worst of the semantic cues (92%). This suggests
either that observers think that text is a more reliable cue than it actually is, or that
observers think they can recognize text better than they actually can. Some of the
text appearing in the image sets was written in languages and scripts unfamiliar to
many of the observers. The ‘clouds’ cue was also high in con� dence (4.5) but low
in accuracy (91.1%).

The most accurate cues were ‘car’, ‘grass’, ‘road’, ‘animal’, and ‘people’, each
of which showed an accuracy above 95%. The least accurate semantic cues were
‘� ower’, ‘snow’, ‘window’, ‘tree’, ‘cloud’, and ‘text’. Flowers were mentioned in
some of the most dif� cult images, such as close-ups of � owerbeds. The similar
color of snow and clouds, which often point to exactly opposite image orientations,
could be confused at low resolutions, resulting in incorrect orientation decisions.
Trees can be a misleading cue because of their fractal nature; i.e. branches of trees
can be confused as whole trees, confusing orientation decisions.

In similar analysis, we examined which cues were associated with incorrect
classi� cations at the � nal zoom level. Figure 7a presents a plot of the fraction
of incorrect � nal observations in which each cue was mentioned. ‘Color’, ‘sky’,
and ‘� ower’ were the biggest culprits, responsible for 27%, 24.6%, and 20.9%
of incorrect orientations, respectively. ‘People’ and ‘trees’ were also mentioned
in more than 10% of incorrect � nal observations. Note that we need to separate
concept failure (e.g. a person lying on the beach) from recognition failure (e.g.
water or re� ection of sky mistaken as sky).

Figure 7b shows the reliability of each cue, expressed as the percentage of
times that the cue was mentioned but the orientation was incorrect. ‘Flowers’ and
‘buildings’ were the least reliable cues. The orientation was incorrect 13.1% of
the times that ‘� ower’ was mentioned as a cue and 11.9% of the times that
‘building’ was mentioned. Most other cues showed a 1–3% rate of incorrect
orientation.

Figures 8a and 8b present similar graphs broken down by resolution level. Some
caution should be taken when trying to draw conclusions from the higher zoom
levels, as the sample size is quite small (e.g. at zoom level 5, only 31 observations
were incorrect) and the dif� culty is greater.



446 J. Luo et al.

Figure 7. Analysis of misleading cues at the � nal zoom level.

3.7. Analysis of semantic cues

Our study has con� rmed that semantic cues, when available, are very important for
orientation determination by humans. When no semantic cues were mentioned at
the � nal zoom level, mean observer accuracy was 77.5%, signi� cantly lower than
the 96% overall accuracy. In fact, of the correct orientations at the � nal zoom level,
98.4% mentioned at least one semantic cue. Humans seem to strongly prefer using
semantic cues. Unfortunately, semantic cue detection is often the weakest link in a
computer vision system.

‘Sky’, ‘grass’, and ‘people’ were identi� ed as important cues for the image
orientation problem. Indeed, the majority (69.9%) of correct � nal observations
used at least one of these three cues. When only semantic cues were mentioned
in a correct � nal observation, only 21.5% did not include sky, grass, or people. In
other words, perfect recognition of sky, grass, and people can carry about 80% of
the images (though humans are not perfect at recognizing such objects, in particular
people, at low resolutions). In addition, when recognizing these cues, humans have
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remarkable ability in dealing with occlusion (e.g. seeing sky through tree branches),
and color or geometric variations.

It is also of interest to see how accuracy increases with zoom level for each sub-
category of scenes that contain these semantic cues. It is important from the point of
human vision to know whether different categories of scenes show different patterns
in terms of psychophysical curves, and what might determine those categories. In
Fig. 9, the curves correspond to four of the most interesting categories, namely
scenes containing sky, grass, people, and � owers. Although we did not explicitly use
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Figure 9. Psychophysical curves showing how accuracy increases with zoom for major scene sub-
categories.

the size of the semantic features in selecting images for the categories, it is assumed
that these features are signi� cant in size because the observers mentioned them in
the top three primary cues (for at least one zoom level). The psychophysical curves
for large or asymmetric features (e.g. sky, grass, people) have modest slopes while
that for � ower clearly shows more dramatic effect with increased image resolution.
It is also interesting to note that sky is a reliable feature even at the lowest resolution
and its accuracy was in� uenced the least by image resolution.

3.8. Analysis of dif� cult images

Of the 1000 image set, 11.6% of the images were incorrectly oriented by at least one
observer at the � nal zoom level. 1.5% of the images were more often incorrectly
oriented than correctly oriented at the � nal zoom level. Of those 15 images, all but
one are from the Corel image collection. Four of the images are close-ups of � owers,
three are drawings (e.g. graf� ti), two are re� ections of landscapes onto water, two
are sandy landscapes (beaches or deserts), and two have extremely subtle features
(e.g. hidden or tiny birds) indicating the true image orientation. These images are
shown in Fig. 10.

3.9. Dif� culty of professional vs. consumer images

There has been some debate on whether consumer photos or professional photos
are harder to orient correctly. On one hand, professional photos tend to have better
composition, better exposure control, and better overall image quality. On the other
hand, professional photographers tend to take artistic pictures (e.g. close-ups of
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� owers or some interesting patterns in nature) more often than consumers, and these
can be dif� cult to orient correctly.

To resolve this debate, we analyzed the observations on the 500 JBJL consumer
images separately. The accuracy at the � nal zoom level was 98.1% on the JBJL
images, compared to 96.2% on the full image set. Figures 11a and b show the
differences in accuracy by resolution level. The accuracy on JBJL was 2–6%
better at all resolution levels. On the other hand, there were higher percentages of
incorrect decisions at the � nal zoom level on the whole set than on JBJL, as shown in
Fig. 11c. In addition, there were more images judged as ‘don’t care’ or ‘unknown’.
Our experiment suggests that for humans, orienting professional photos is more
dif� cult than orienting consumer photos because of higher occurrences of peculiar
subjects and composition. Interestingly, Vailaya et al. (1999) reported that an
automatic single-frame orientation algorithm based on low-level features achieved
higher accuracy on the Corel images than on the personal images probably similar
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Figure 11. Comparison of orientation accuracy on only JBJL images and the whole image set (JBJL
C Corel): (a) uncorrectedaccuracy by zoom level, (b) corrected accuracy by zoom level, (c) histogram
of incorrected decisions at the � nal zoom level.

to the JBJL images. Therefore, it appears that consumer images are easier than
professional images for humans to orient but harder for computer vision systems,
which are severely limited in their ability to recognize semantic cues.
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3.10. Observer comments

Participants made a variety of interesting comments. Many mentioned that their
orientation mistakes at low resolutions were due to incorrect object recognition.
Several observers reported that they thought they saw a person in a low-resolution
image and made an orientation decision accordingly, but at higher resolutions
realized that there was no person. This underscores that people are a very important
cue, and that the brain tries hard to locate people in images. One observer noted
that his con� dence in orientation was actually a measure of con� dence in object
recognition, and assuming that the object recognition was correct, the con� dence
of correct orientation was 100%. There was also a strong tendency to place blue
colors on top and green colors on the bottom. Several observers noted that they
were tricked by grass patches near the actual top of the image and blue objects
near the bottom. Several people mentioned that text was not helpful because it
was in an unfamiliar script. In several cases, observers said that they could narrow
the orientation down to north/ south or east /west, but could not choose the speci� c
orientation. Some comments indicate that observers could sometimes not explain an
orientation decision, instead saying that it was a ‘hunch’ or that it ‘just feels right’.

For some observations, the comments reveal that very speci� c and unique objects
were used. For example, a number of observers mentioned that a Santa Claus doll
was easy to identify at low resolutions because of its unique clothing. The skyline
of a speci� c city, Seattle, was identi� ed in one comment. The faucet of a sink was
used in one case. The unique shape of a baseball � eld was used in another. Some
observers reported using subtle cues caused by gravity, like the curve of a plant
stem and the texture features of falling water. At least one observer used the fact
that red is above green in traf� c signals. Use of these very speci� c cues signals a
problem for automatic orientation detection algorithms. While humans recognize
thousands of objects and use them to make complex inferences about orientation,
robust detection algorithms exist only for a handful of objects. This is a substantial
handicap for automatic orientation algorithms and will likely prevent them from
surpassing or rivaling human orientation accuracy.

4. DISCUSSION

We gained a number of insights from this psychophysical study.

4.1. Image resolution

Our study found that observer accuracy increases steadily with increasing resolution
until what is referred to as ‘Base /4’ (i.e. 256 £ 384), at which point accuracy was
95.7%. Increasing to the next resolution level, 512£768, increased accuracy by less
than a percentage point. A conclusion is that Base/4 is an adequate resolution for
accurate orientation by human observers, and therefore, is probably a reasonably
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adequate resolution for automatic algorithms as well, especially considering the
limitations of such algorithms in recognizing semantic objects.

4.2. Upper bounds on accuracy

It is safe to assume that an automatic orientation algorithm will not surpass the
accuracy of an average human observer on an unconstrained set of images, given
that inferring orientation is a task that humans are trained to do well. Humans
are able to recognize thousands of objects and use high-level reasoning to deduce
orientation. An automatic algorithm cannot rival that level of sophistication in the
foreseeable future. Human performance, therefore, represents an upper bound on
the accuracy that an algorithm can attain. We conclude that an upper bound for
accuracy of an algorithm using all available semantic cues is about 96%. If only
coarse semantics from thumbnails are used, the upper bound is about 84%. Of
course, these bounds depend on the nature of the image set. An algorithm could
achieve vastly different detection rates on different image sets, even 100% detection
on a conveniently chosen dataset.

4.3. Relative frequencies of incorrect answers

Our study found that observers are twice as likely to misorient images by 180±

than by either of the 90± possibilities. This suggests that observers use cues that
can distinguish between ‘north and south’ or ‘east and west’, but are unable to
distinguish between the remaining possibilities. Such cues could include horizon
lines.

4.4. Orientation con�dence

It was found that accuracy and con� dence of observations were highly correlated
(R2 D 0:9996), indicating that humans are very good at judging the quality of their
decisions. This would be a very desirable characteristic of an automatic algorithm.
When the con� dence of the algorithm is low, the input image could be � agged and
judged by a human, thus improving the overall accuracy of the system.

4.5. Semantic cues

Semantic cues are very important for image orientation. In our study, only 1.6%
of images were oriented correctly without semantic cues. Some cues stood out
as being very important, such as ‘sky’ (used in 31% of the correct observations),
and ‘people’ (36.7% of the correct observations). Other important semantic cues
include ‘cloud’, ‘water’, ‘grass’, and ‘trees’. In fact, a combination of ‘sky’, ‘grass’,
or ‘people’ were used in over 70% of the correct observations. These objects are
all fairly well de� ned. We are in the process of developing more robust automatic
algorithms for detecting these types of objects (Luo and Boutell, 2003). Other cues
mentioned by observers are not as well de� ned, making detection of them by an
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automatic algorithm more dif� cult. Such cues include categories of objects, such
as animals (all species), buildings (all types and styles), ground (dirt, carpet, tiles,
etc.), furniture (all types), and vehicles (all types and models). Among them, it is
possible and bene� cial to develop automatic detectors for sub-categories of objects:
the most promising include skyscrapers (Iqbal and Aggarwal, 2002), passenger cars
(Schneiderman and Kanade, 2000), paved road (Campbell et al., 1997) and sand
(Naphade and Huang, 2000). We do note that many of the published semantic object
detectors actually use location cues (therefore explicitly assuming the correct image
orientation). The least accurate semantic cues were � owers and snow. Text was
found to be a low-payoff cue, because it occurs infrequently in typical photographic
images, and the variety of languages and scripts makes it dif� cult to use.

In conclusion, we have conducted a psychophysical study of perception of
orientation of full-cue (color, texture, shape, and shading) photographic images
(see Note 2). Using a large set of images representative of the photographic space
and extensive interaction by a large group of observers, we were able to obtain
valuable information for development of automatic single-frame orientation detec-
tion algorithms, including realistic accuracy goals and bene� cial types of semantic
cues.
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NOTES

1. We were aware of the potential bias a rectangular photograph may pose and
considered using squarely-cropped images. However, in order to stay true to the real
use scenarios, we included images in both ‘landscape’ and ‘portrait’ orientations and
emphasized this aspect in the practice session with each observer.

2. Adding B&W pictures would be an interesting experiment but would require
the same level of effort to be repeated.
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APPENDIX A. LIST OF WRITE-IN CUES MENTIONED BY OBSERVERS

Cue # of % of
obs obs

balloon 12 0.09%
bicycle 4 0.03%
bird nest 1 0.01%
boat 35 0.27%
bottle 5 0.04%
bow and arrow 1 0.01%
bubbles 2 0.02%
candy cane 7 0.05%
clothing 1 0.01%
cross 2 0.02%
curtain 1 0.01%
dishes 3 0.02%
door 27 0.21%
fence 13 0.10%
� replace 14 0.11%
� ag 2 0.02%
food 2 0.02%
heart shape 5 0.04%
highlights from sun 1 0.01%
horizon 3 0.02%
lamps 43 0.33%
lighting 26 0.20%
moon 3 0.02%
ornaments 7 0.05%
plants 33 0.25%

Cue # of % of
obs obs

post/pole 8 0.06%
railroad tracks 3 0.02%
rocks 4 0.03%
shading 5 0.04%
shadows 41 0.32%
ski gear 2 0.02%
ski lift 3 0.02%
slide 1 0.01%
smoke 3 0.02%
stairs 22 0.17%
statue 20 0.15%
stockings 4 0.03%
stop light 1 0.01%
sun 20 0.15%
sunset 22 0.17%
swing 2 0.02%
symmetry 2 0.02%
tractor 3 0.02%
train 3 0.02%
umbrella 3 0.02%
vanishing point 3 0.02%
vase 2 0.02%
walls 20 0.15%
waterfall 9 0.07%
wreath 7 0.05%

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-1523^28^2921L.1494[aid=289953]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0010-0277^28^2967L.1[aid=1510144]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0031-3203^28^2931L.1921[aid=5367532]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0301-0066^28^2929L.287[aid=5367533]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-1523^28^2921L.1494[aid=289953]


456 J. Luo et al.

APPENDIX B1. EXAMPLES OF THE CONSUMER PHOTOS USED IN THIS
STUDY
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APPENDIX B2. EXAMPLES OF THE PROFESSIONAL PHOTOS USED IN THIS
STUDY


