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Abstract—Cameras are now commonplace in our social and
computing landscapes and embedded into consumer devices like
smartphones and tablets. A new generation of wearable devices
(such as Google Glass) will soon make ‘first-person’ cameras
nearly ubiquitous, capturing vast amounts of imagery without
deliberate human action. ‘Lifelogging’ devices and applications
will record and share images from people’s daily lives with their
social networks. These devices that automatically capture images
in the background raise serious privacy concerns, since they are
likely to capture deeply private information. Users of these devices
need ways to identify and prevent the sharing of sensitive images.

As a first step, we introduce PlaceAvoider, a technique for
owners of first-person cameras to ‘blacklist’ sensitive spaces
(like bathrooms and bedrooms). PlaceAvoider recognizes images
captured in these spaces and flags them for review before
the images are made available to applications. PlaceAvoider
performs novel image analysis using both fine-grained image
features (like specific objects) and coarse-grained, scene-level
features (like colors and textures) to classify where a photo was
taken. PlaceAvoider combines these features in a probabilistic
framework that jointly labels streams of images in order to
improve accuracy. We test the technique on five realistic first-
person image datasets and show it is robust to blurriness, motion,
and occlusion.

I. INTRODUCTION

Cameras have become commonplace in consumer devices
like laptops and mobile phones, and nascent wearable devices
such as Google Glass,' Narrative Clip,> and Autographer® are
poised to make them ubiquitous (Figure 1). These wearable
devices allow applications to capture photos and other sensor
data continuously (e.g., every 30 seconds on the Narrative
Clip), recording a user’s environment from a first-person
perspective. Inspired by the Microsoft SenseCam project [24],

'Google Glass: http://www.google.com/glass/start/
Narrative (formerly known as Memoto): http:/getnarrative.com
3 Autographer: http:/autographer.com

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

NDSS 14, 23-26 February 2014, San Diego, CA, USA

Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/doi-info-to-be-provided-later

GOOGLE]

Fig. 1. Wearable camera devices. Clockwise from top left: Narrative Clip takes
photos every 30 seconds; Autographer has a wide-angle camera and various
sensors; Google Glass features a camera, heads-up display, and wireless
connectivity. (Photos by Narrative, Gizmodo, and Google.)

these devices are also ushering in a new paradigm of ‘lifel-
ogging’ applications that allow people to document their daily
lives and share first-person camera footage with their social
networks. Lifelogging cameras allow consumers to photograph
unexpected moments that would otherwise have been missed,
and enable safety and health applications like documenting
law enforcement’s interactions with the public and helping
dementia patients to recall memories.

However, with these innovative and promising applica-
tions come troubling privacy and legal risks [1]. First-person
cameras are likely to capture deeply personal and sensitive
information about both their owners and others in their envi-
ronment. Even if a user were to disable the camera or to screen
photos carefully before sharing them, malware could take and
transmit photos surreptitiously; work on visual malware for
smartphones has already demonstrated this threat [52]. As first-
person devices become more popular and capture ever greater
numbers of photos, people’s privacy will be at even greater
risk. At a collection interval of 30 seconds, the Narrative Clip
can collect thousands of images per day — manually reviewing
this bulk of imagery is clearly not feasible. Usable, fine-grained
controls are needed to help people regulate how images are
used by applications.

A potential solution to this problem is to create algorithms
that automatically detect sensitive imagery and take appro-
priate action. For instance, trusted firmware on the devices
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Fig. 2. Sample first-person images from our datasets. Note the blur and poor
composition, and the visual similarity of these four images despite being taken
in spaces with very different levels of potential privacy risk.

could scan for private content and alert the user when an
application is about to capture a potentially sensitive photo.
Unfortunately, automatically determining whether a photo con-
tains private information is difficult, due both to the computer
vision challenges of scene recognition (especially in blurry
and poorly composed first-person images), and the fact that
deciding whether a photo is sensitive often requires subtle and
context-specific reasoning (Figure 2).

Nevertheless, in this work we take an initial step towards
this goal, studying whether computer vision algorithms can
be combined with (minimal) human interaction to identify
some classes of potentially sensitive images. In particular, we
assume here that certain locations in a person’s everyday space
may be sensitive enough that they should generally not be
photographed: for instance, a professor may want to record
photos in classrooms and labs but avoid recording photos in
the bathroom and in his or her office (due to sensitive student
records), while at home the kitchen and living room might be
harmless but bedroom photos should be suppressed.

In this paper we propose an approach called “PlaceAv-
oider”, which allows owners of first-person cameras to blacklist
sensitive spaces. We first ask users to photograph sensitive
spaces (e.g., bathrooms, bedrooms, home offices), allowing
our system to build visual models of rooms that should not
be captured. PlaceAvoider then recognizes later images taken
in these areas and flags them for further review by the user.
PlaceAvoider can be invoked at the operating system level to
provide warnings before photos are delivered to applications,
thus thwarting visual malware and withholding sensitive pho-
tos from applications in general.

PlaceAvoider complements existing location services, using
them to reduce the computational effort made when classifying
images. For example, GPS can be used to identify the building
in which the device is located, but it is typically not accurate
enough to identify a specific room, because GPS signals are
not reliably available indoors. Even if a reliable indoor location
service existed, it would pinpoint where a camera is, not what
it is looking at (e.g., when the camera is in a hallway, but
capturing a nearby bathroom).

Research challenges. This work addresses several research
challenges in order to make PlaceAvoider possible. First, we
need an approach to recognize rooms using visual analysis
with reasonable computational performance (either locally on
the device or on a secure remote cloud). Second, many (or
most) images taken from first-person cameras are blurry and
poorly composed, where the already difficult problems of

visual recognition are even more challenging. Third, rooms
change appearance over time due to dynamic scenes (e.g.,
moving objects) as well as variations in illumination and
occlusions from other people and objects. Finally, photos from
‘other’ spaces (i.e., spaces that are not blacklisted) may form a
large fraction of images, and false positives must be kept low
to reduce the burden on the owner.

Our Contributions. Our specific contributions are:

1) Presenting PlaceAvoider, a framework that identifies
images taken in sensitive areas to enable fine-grained
permissions on camera resources and photo files;

2)  Recognizing images of a space by using a novel
combination of computer vision techniques to look
for distinctive ‘visual landmarks’ of the enrolled
spaces and global features of the room such as color
patterns;

3) Analyzing photo streams to improve the accuracy
of indoor place recognition by labeling sequences of
images jointly, using (weak) temporal constraints on
human motion in a probabilistic framework;

4) Implementing and evaluating PlaceAvoider using
first-person images from five different environments,
showing that photos from sensitive spaces can be
found with high probability even in the presence of
occlusion or images taken from non-enrolled spaces.

The remainder of the paper describes these contributions
in detail. Section II describes our architecture, constraints, and
concept of operation, while Section III describes our image
classification techniques. Section IV reports our evaluation
on several first-person datasets. We discuss the implications
of our results in Section V before surveying related work in
Section VI and concluding in Section VII.

II. OUR APPROACH

Our goal is a system that allows users to define context-
based fine-grained policies to control the sharing of their
images from smartphones and first-person cameras. We start
by describing our privacy goals.

A. Privacy goals and adversary model

The increasing presence of cameras in electronic devices
means that cameras are now more likely to enter sensitive
spaces, where the cost of image leaks may be high. Our work
aims to protect the privacy of users in two ways.

First, we assume that users will want to share some of their
first-person photos with social and professional contacts but
will need help managing and filtering the huge collections of
images that their devices collect. Their social contacts are not
‘adversaries’ in the traditional sense (where attackers actively
try to obtain sensitive photos), but inadvertent sharing of cer-
tain images can nevertheless cause embarrassment (e.g., photos
with nudity) and have social or professional consequences.
Thus it is important to help users identify potentially sensitive
images before they are shared.

Second, malicious applications (such as Trojan applica-
tions) that have access to a device’s camera may seek to



actively capture sensitive images in the background. For ex-
ample, visual malware such as PlaceRaider [52] may be used
to surveil sensitive spaces like offices or to blackmail victims
by capturing nude photographs in their bedroom. We assume
such applications have been installed (either unwittingly or as
a Trojan application) with the requisite permissions for the
camera and Internet access, but that the operating system has
not been compromised.

B. System model

We consider a model in which sensitive photos are iden-
tified by analyzing the image content in conjunction with
contextual information such as GPS location and time, i.e.,
where and when the photo was taken. To make image analysis
for privacy leaks tractable, we focus on fine-grained control
of images based on the physical spaces captured within the
images. Our approach could withhold sensitive images from
applications until they are reviewed by the owner of the
camera, or it could tag images with metadata to be used by
trusted (e.g., lifelogging) applications to assist the owner in
analyzing their image collections.

Our proposed system has three elements: a privacy policy
to indicate private spaces, an image classifier to flag sensitive
images, and a policy enforcement mechanism to determine how
sensitive images are handled by the receiving applications. For
instance, Figure 3 illustrates how PlaceAvoider allows fine-
grained control of a camera based on context-based policy.
We now briefly describe these three components:

e  Privacy policy. In this work, a policy is a set of
blacklisted spaces — we use the term blacklisted
generally to refer to any space that we want to label
(i.e., a blacklisted space can vary with respect to
its sensitivity). Each space in the policy includes
a geospatial location (e.g., latitude and longitude),
enrollment images or a visual model of the space, a
string identifier (e.g., ‘bathroom’), and the action to
be taken by PlaceAvoider (e.g., which application(s)
can access the image). In addition, a sensitivity value
can be given to trade-off between conservative and
liberal blacklisting when the image analysis is not very
certain.

o Image classifier. The image classifier builds models
of enrolled spaces, and then classifies new images
according to where they were taken. The classifier
must deal with significant image noise, including
motion blur, poor composition, and occlusions (caused
by people and objects added to a space). The classi-
fier can process individual images, or jointly process
image sequences in order to improve accuracy. As
illustrated in Figure 3, this classification step could
be outsourced to an off-board image classifier such
as a cloud service (akin to cloud-based speech-to-text
translation offered by Android* and Apple i0S%). We
discuss trade-offs between on- and off-board process-
ing in Section IV-E.

e  Policy enforcement. We assume two possible policy
enforcement mechanisms. User policies can specify

4Voice Search: http://www.google.com/insidesearch/features/voicesearch/
3Siri: http://www.apple.com/ios/siri/

that sensitive photos must be blocked from applica-
tions, in which case users can review these photos
before they are delivered to the application, or users
can allow access to trusted applications that make
use of metadata supplied by the image classifier.
The policy enforcement mechanism delivers photos
accordingly, either to the reviewing interface or to the
trusted applications.

We anticipate two types of scenarios that PlaceAvoider
must handle. The first scenario is when the user can practically
enroll all possible spaces in the structure, like in a home with
a dozen rooms. We call these closed locales; for these places,
our classifier can assign each photo into one of these n rooms
using an n-way classifier. The second scenario is for open
locales — buildings with a large number of spaces for which it
is not feasible to enroll every space. This is a more challenging
case in which we also need to identify photos taken in none of
the n classes. We evaluate PlaceAvoider under both scenarios
in Section IV.

C. Usage scenario

PlaceAvoider addresses the following usage scenario. Mary
wears a sensor-enabled lifelogging device so that she can
record her activities throughout the day and capture moments
that would otherwise be hard to photograph (like interactions
with her infant). However, she is concerned about the cam-
era taking photos in sensitive areas. She decides to set a
PlaceAvoider policy. She has five rooms in her apartment and
enrolls them by taking pictures of each space as prompted
by PlaceAvoider. She asserts that she does not want photos
taken in her bathroom or bedroom. She sets a similar policy
at work. She spends most of her time in her office, a lab, and
a conference room. She enrolls these spaces, deeming the lab
a sensitive room.

Soon afterwards she is working in the lab and receives
an alert on her smartphone indicating that an application is
attempting to take a photo in a sensitive space. She confirms
the alert, wondering why her exercise-monitoring app is at-
tempting to take surreptitious photos and decides to uninstall
the app. Later that evening, she downloads the photos from her
lifelogging camera. The PlaceAvoider system neatly organizes
her photos temporally and spatially, flagging the images that
were taken in sensitive spaces.

III. IMAGE CLASSIFICATION

Having described our system architecture, adversarial
model, and usage scenario, we now turn to the challenge of
automatically recognizing where a photo was taken within an
indoor space based on its visual content. As described above,
we assume that GPS has provided a coarse position, so our goal
here is to classify image content amongst a relatively small
number of possible rooms within a known structure. While
there is much work on scene and place recognition [56], [37],
we are not aware of work that has considered fine-grained
indoor localization in images from first-person devices.

We first consider how to classify single images, using two
complementary recognition techniques. We then show how to
improve results by jointly classifying image sequences, taking
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Fig. 3. An abstract depiction of PlaceAvoider enforcing a fine-grained camera privacy policy. Our model leverages cloud computation to perform compute-
intensive tasks. Cloud-based implementations of PlaceAvoider could also enforce privacy preferences for photo sharing sites.

L +

Extract local features ; Match features against
I, SIFT blacklists

P@L,,.. 1)

Extract global features ;

HOG, SIFT, RGB, LBP,GIST Logistic regression

I T, I3 Iy TS
L 30 .60 .10 .00 .00
HMM
L, .00 .90 .10 .00 .00
I, .20 .20 20 20 20
Is .05 .80 .10 .05 .00

Fig. 4. The PlaceAvoider classifier works on streams of images extracting local and global features. Single image classification feeds the HMM which outputs

room labels and marginal distributions.

advantage of temporal constraints on human motion. Figure 4
depicts the classifier architecture used in PlaceAvoider.

A. Classifying individual images

We employ two complementary methods for classifying
images. The first is based on a concept from computer
vision called ‘local invariant features’, in which distinctive
image points (like corners) are detected and encoded as high-
dimensional vectors that are insensitive to image transforma-
tions (changes in illumination, viewpoint, zoom, etc.). The
second approach relies on global, scene-level image features,
capturing broad color and texture patterns. These approaches
are complementary: local features work well for images with
distinctive objects, but fail when images are blurry or more
generic, while global features model the overall ‘look’ of a
room but are less useful for close-ups of individual objects.

We take machine-learning approaches to both the local- and
global-level techniques. We thus require training data in the
form of images taken in each class (each room of the building);
this training data is produced during the enrollment phase,
when PlaceAvoider prompts the user to take images that cover
the space of interest. Unlike most prior work (Section VI),
our training images do not require rigid organization, extensive
interaction, or specialized equipment.

More formally, we assume that we have a small set R =

{r1,...,rn} of possible locations (kitchen, living room, etc.),
and for each room r; we have a set Z; of training images.
Given a new image I, our goal is to assign it one of the labels
in R.

Local features. Our local feature classifier represents each
enrolled space as a collection of distinctive local feature
descriptors that are invariant to variations like pose and illumi-
nation changes. We use the Scale Invariant Feature Transform
(SIFT) [38] to produce these features. Briefly summarized,
SIFT finds corners and other points in an image that are likely
to withstand image transformations and analyzes the distribu-
tion of gradient orientations within small neighborhoods of
each corner. It identifies a local orientation and scale and
then encodes the gradient distributions as a 128-dimensional
invariant descriptor vector for each point.

To build a model of room r; € R, we extract SIFT features
for each training image, producing a set of 128-dimensional
vectors for each room (where each image contributes hundreds
or thousands of vectors depending on its content). The indi-
vidual feature lists are concatenated into one list, ignoring the
spatial position of the feature, yielding a set M; for each room
Ti.

To classify a test image I, we again find SIFT features. Our
task now is to compare this set of SIFT features to each model
M;, finding the one that is most similar. We could simply



count the number of ‘matching’ points in each set (for some
definition of “matching”), but this yields poor results, because
many image features exist in multiple rooms of a house. For
instance, consistent architectural or design elements may reside
throughout a home, or similar objects may exist throughout the
offices of a building. We thus match images to models based
on the number of distinctive local features that they have in
common.

In particular, we define a scoring function .S that evaluates
a similarity between a test image I and a given set of SIFT
features M; corresponding to the model of room r;,

: !
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where M_; is the set of features in all rooms except r;, i.e.
M_; = Uy, er—{r,yM;, 1(-) is an indicator function that is
1 if its parameter is true and O otherwise, || - || denotes the
L2 (Euclidean) vector norm, and 7 is a threshold. Intuitively,
given a feature in a test image, this scoring function finds the
distance to the closest feature in a given model, as well as the
distance to the closest feature in the other models, and counts
it only if the former is significantly smaller than the latter. Thus
this technique ignores common features, counting only those
that are distinctive to a particular room. The minimizations in
Equation (1) can be computationally intensive for large sets
since the vectors have high dimensionality. We consider how
to do them more efficiently in Section IV.

To perform classification for image I, we simply choose the
room with the highest score, arg max, cx S(I,r;), although
we consider an alternative probabilistic interpretation in Sec-
tion III-B.

Global features. Unfortunately, many first-person images do
not have many distinctive features (e.g., blurry photos, photos
of walls, etc.), causing local feature matching to fail since
there are few features to match. We thus also use global,
scene-level features that try to learn the general properties
of a room, like its color and texture patterns. These features
can give meaningful hypotheses even for blurry and otherwise
relatively featureless images. Instead of predefining a single
global feature type, we instead compute a variety of features
of different types and with different trade-offs, and let the
machine learning algorithm decide which of them are valuable
for a given classification task. In particular, we use:

1)  RGB color histogram, a simple 256-bin histogram of
intensities over each of the three RGB color channels,
which yields a 768-dimensional feature vector. This is
a very simple feature that simply measures the overall
color distribution of an image.

2)  Color-informed Local Binary Pattern (LBP), which
converts each 9 x 9 pixel neighborhood into an 8-bit
binary number by thresholding the 8 outer pixels by
the value at the center. We build a 256-bin histogram
over these LBP values, both on the grayscale image
and on each RGB channel, to produce a 1024-
dimensional vector [30]. This feature produces a
simple representation of an image’s overall texture
patterns.

3)  GIST, which captures the coarse texture and layout of
a scene by applying a Gabor filter bank and spatially

down-sampling the resulting responses [41], [13]. Our
variant produces a 1536-dimensional feature vector.

4) Bags of SIFT, which vector-quantize SIFT fea-
tures from the image into one of 2000 ‘visual
words’ (selected by running k-means on a train-
ing dataset). Each image is represented as a single
2000-dimensional histogram over this visual vocab-
ulary [56], [37]. This feature characterizes an image
in terms of its most distinctive points (like corners).

5)  Dense bags of SIFT are similar, except that they are
extracted on a dense grid instead of at corner points
and the SIFT features are extracted on each HSV
color plane and then combined into 384-dimensional
descriptors. We encode weak spatial configuration
information by computing histograms (with a 300-
word vocabulary) within coarse buckets at three spa-
tial resolutions (1 x 1, 2 x 2, and 4 x 4 grid, for a
total of 1 + 4 4 16 = 21 histograms) yielding a 300
x 21 = 6,300-dimensional vector [56]. This feature
characterizes an image in terms of both the presence
and spatial location of distinctive points in the image.

6) Bags of HOG computes Histograms of Oriented Gra-
dients (HOG) [11] at each position of a dense grid,
vector-quantizes into a vocabulary of 300 words, and
computes histograms at the same spatial resolutions
as with dense SIFT, yielding a 6,300-dimensional
vector. HOG features capture the orientation distri-
bution of gradients in local neighborhoods across the
image.

Once we extract features from labeled enrollment images,
we learn classifiers using the LibLinear L2-regularized logistic
regression technique [17].

B. Classifying photo streams

The first-person camera devices that we consider here often
take pictures at regular intervals, producing temporally ordered
streams of photos. These sequences provide valuable contex-
tual information because of constraints on human motion: if
image I, is taken in a given room, it is likely that [, is also
taken in that room. We thus developed an approach to jointly
label sequences of photos in order to use temporal features as
(weak) evidence in the classification.

We use a probabilistic framework to combine this evidence
in a principled way. Given a set of photos I1,1ls,..., 1,
ordered with increasing timestamp and taken at roughly regular
intervals, we want to infer a room label I; € R for each image
I;. By Bayes’ Law, the probability of a given image sequence
having a given label sequence is,

P(ll,...,lm|ll,...,lm) O(P(Il,...,lm”l,...,lm)P(ll,...,lm),

where we ignore the denominator of Bayes’ Law because the
sequence is fixed (given to us by the camera). If we assume that
the visual appearance of an image is conditionally independent
from the appearance of other images given its room label,
and if we assume that the prior distribution over room label
depends only on the label of the preceding image (the Markov
assumption), we can rewrite this probability as,

Py Iy I) o< P(lo) [ [ PUillin) [[ P(TilL). - @
=2 i=1



The first factor P(l1) is the prior probability of the first room
label. We assume here that this is a uniform distribution, and
thus it is ignored. The second factor models the probability of
a given sequence of room labels and should capture the fact
that humans are much more likely to stay in a room for several
frames than to jump randomly from one room to the next. In
this paper we use a very simple prior model,

a, if I; # 11,
P(lilli—1) = .
(lifti=1) {1 — (n—1)c, otherwise,

where n is the number of classes (rooms) and « is a small
constant (we use 0.01). Intuitively, this means that transitions
from one room to another have much lower probability than
staying in the same room. This prior model could be strength-
ened depending on contextual information about a place —
e.g. it may be impossible to travel from the kitchen to the
bedroom without passing through the living room first — but
we do not consider that possibility in this paper.

The third factor in Equation (2) models the likelihood that
a given image was taken in a given room. Intuitively, these
likelihoods are produced by the local and global classifiers
described in Section III-A, but we need to ‘convert’ their
outputs into probabilities. Again from Bayes’ Law,
P(l;|1;) P (1)

We again ignore P(I;) (since I; is observed and hence
constant) and assume that the prior over rooms P(l;) is a
uniform distribution, so it is sufficient to model P(I;|I;).
For the global classifiers, we use LibLinear’s routines for
producing a probability distribution Pg(l;|I;) from the output
of a multi-class classifier based on the relative distances to the
class-separating hyperplanes [17]. For the local features, we
introduce a simple probabilistic model. Equation (1) defined
a score S(I,r;) between a given image I and a room 7;, in
particular counting the number of distinctive image features
in r; that match 7. This matching process is, of course, not
perfect; the score will occasionally count a feature point as
matching a room when it really does not. Suppose that the
probability that any given feature match is correct is 3, and
is independent of the other features in the image. Now the
probability that an image was taken in a room according to
the local feature scores follows a binomial distribution,

7. N S(1,l;) _ N—-S(I,0;)
i) (gp,,)8 -5

where N is the total number of matches across all classes,

N =Y S(Ir).
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We set 5 = 0.9 in this paper; the system is not very sensitive to
this parameter unless it is set close to 0.5 (implying that correct
matches are no more likely than chance) or to 1 (indicating
that matching is perfect).

To produce the final probability P(I;|l;), we multiply
together P (I;|l;) and Pg(1;|l;), treating local and global
features as if they were independent evidence.

The model in Equation (2) is a Hidden Markov Model

(HMM), and fast linear-time algorithms exist to perform infer-
ence. In this paper we use the HMM to perform two different
types of inference, depending on the application (as described
in Section IV). We may wish to find the most likely room label
[¥ for each image I, given all evidence from the entire image
sequence,

0,0 = arg max P(ly, ..U |, ...

1yeeoslm
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which can be solved efficiently using the Viterbi algo-
rithm [29]. In other applications, we may wish to compute the
marginal distribution P(l;|Iy,...,1,,) — i.e., the probability
that a given image has a given label, based on all evidence
from the entire image sequence — which can be found using
the forward-backward algorithm [29]. The latter approach
gives a measure of confidence; a peaky marginal distribution
indicates that the classifiers and HMM are confident, while a
flat distribution reflects greater uncertainty.

IV. EVALUATION

We conducted several experiments to measure the accuracy
and performance of PlaceAvoider on a variety of datasets and
scenarios. We first describe our first-person image datasets
(Section IV-A) and then evaluate the performance of local
and global classifiers on single images (Section IV-B) before
evaluating the combined features and joint stream classification
in Section IV-C. We evaluate the accuracy in a retrieval
setting (Section IV-D) and report computational performance
in Section IV-E.

A. Evaluation datasets

We are not aware of any existing dataset of first-person
imagery suitable for our study, so we collected five new
datasets in a variety of indoor spaces. For each dataset, we first
collected enrollment (training) photos that were deliberately
taken by a human who tried to take a sufficient number of
photos to cover each room. For each dataset, we took between
three and five rounds of enrollment images at different times
of the day to capture some temporal variation (e.g., changes in
illumination and in the scene itself). The number of enrollment
images per space (the sum over all rounds) varied from 37 to
147, depending on the size of room and the user.

Collecting these images is simple and only took a few
minutes. We then collected stream (test) datasets in which
the person wore a first-person camera as they moved around
the building. Because Google Glass and other devices were
not yet commercially available, we simulated them with a
smartphone worn on a lanyard around the person’s neck. These
smartphones ran an app that took photos at a fixed interval
(approximately three seconds), and collection durations ranged
from about 15 minutes to one hour.

Our datasets consisted of three home and two workplace
environments, each with five rooms (classes):

e  House 1, a well-organized family home with three
bedrooms, bathroom, and study;

e  House 2, a sparsely-furnished single person’s home,
with garage, bedroom, office, bathroom, and living
room;



e  House 3, a somewhat more cluttered family home with
two bedrooms, a living room, kitchen, and garage;

e  Workplace 1, a modern university building with
common area, conference room, bathroom, lab, and
kitchen,;

e Workplace 2, an older university building with a
common area, conference room, bathroom, lab, and
office.

The datasets were collected independently by four of the
authors.® The authors simulated various daily chores during the
stream collection, with the aim of obtaining realistic coverage
across various rooms. For example, in Workplace 2 the author
obtained a cup of coffee, picked up printed material, spoke with
an administrative assistant, and visited the conference room
and common areas. In House 1, the author simulated activities
like visiting the bathroom, working in the study, reading, and
organizing. In House 2, the author performed household chores
with a high degree of movement, including cleaning, folding
and organizing clothes, moving objects from room to room,
etc. Table I presents detailed statistics on the datasets.

B. Single image classification

Local features. We begin by evaluating the classifier based on
local features described in Section III-A. In addition to pre-
senting raw classification accuracy statistics, we also test the
effect of various parameters on the accuracy of this approach.
To do this without overfitting to our test dataset, all results
in this section use the enrollment photos for both training
and testing, using a cross-validation approach. In particular,
if a dataset has r rounds of enrollment photos, we train r
classifiers, in each case using » — 1 rounds as training images
and the other round as the test images, and then averaging
the accuracies together. This methodology simulates a closed
locale, as defined in Section II-B, where each photo is known
to have been taken in one of the enrolled spaces and the task
is to classify amongst them. We discuss the evaluation of open
locales in Section IV-D.

Table II presents results of n-way classification for each
of the five datasets (where n = 5 since there are five rooms
in each dataset). The classification accuracies range across the
datasets, from a high of 98.4% accuracy for House 1 to 76.2%
for House 2. This is not surprising, given that House 2 is
sparsely decorated with relatively few feature points for the
local classifier to use. We compare these results to a baseline
that simply chooses the largest class; even for House 2, our
classifier beats this baseline by over 2.5 times.

For images with few interest-point descriptors, like blurry
photos or photos of walls and other textureless surfaces, the
local classifier has little information with which to make a
decision. Table II shows the average number of distinctive
features per image across the three datasets. When there are
no features to match, or multiple rooms have the same (small)
number of feature matches, the classifier resorts to a random
guess amongst these rooms. The table shows the number of

5The authors collected these datasets to avoid the difficulties associated with
enlisting participants to photograph their own sensitive spaces. We plan to run
user studies with recruited participants in the future.

images for which this happened, as well as the number of
images for which there were no matches at all (so that the
classifier resorted to 5-way random guessing).

The local feature classifier requires a threshold 7 to deter-
mine whether a feature match is distinctive (Equation (1) in
Section III-A). Intuitively, the larger the value of this threshold,
the more feature points are considered during matching, but
these points are less distinctive; for smaller values the matched
feature points are much more accurate, but eventually become
so few that there are many ties and most of the classifier’s
decisions are random guesses. We empirically found minimal
sensitivity for 7 between 0.3—-0.6. For the experiments in this
paper we select a value in the middle of this range, 7 = 0.45.

To test the effect of image resolution on accuracy of the
local classifier, Table II also presents correct classification
rates on images sub-sampled to 1 MegaPixel (MP). This sub-
sampling also has the effect of decreasing the number of
detected SIFT feature points, since SIFT uses heuristics based
on image size to determine how many points to produce. Sur-
prisingly, performance on the lower-resolution images either
equals or beats that of the high-resolution image on all five
datasets. This suggests that the limiting factor on performance
is not image resolution but perhaps image quality; all of
our images were taken indoors without a flash and include
significant blur and sensor noise. Decreasing image resolution
to IMP thus does not decrease performance and in fact may
help to reduce noise.

Global features. As we discussed in Section II, a problem
with the local classifier is that it fails on images with few
distinctive points, because there are few feature matches and
the classifier must resort to random guessing. Our global
features are designed to address this problem by building
models of general scene-level characteristics instead of local-
level features. Table III compares classification performance
of our six global features, using the same evaluation criteria
as with the local features — 5-way classification using cross
validation on the enrollment set. For the datasets with relatively
few features, like the sparsely-decorated House 2, the best
global features outperform the local features (78.8% vs. 76.2%
for House 2, and 93.9% vs. 84.0% for Workspace 1), but for the
other sets the local features still dominate. In the next section
we combine these features together with temporal reasoning in
order to improve accuracy. Since the two bags-of-SIFT and the
bags-of-HOG features outperform the other global techniques
by a significant margin for most datasets, we elected to use
only these three in PlaceAvoider.

C. Temporal stream classification

We next evaluate the probabilistic joint image stream label-
ing technique proposed in Section III-B. For this experiment,
we used all of the enrollment photos for training and used
the photo streams for testing. We performed inference on the
Hidden Markov Model (HMM) by using the Viterbi algorithm
to find the most likely sequence of states given evidence from
the entire image stream.

Table IV shows the results of this step. When classifying
single images, the global and local classifiers perform roughly
the same, except for the sparsely-decorated House 2 where
global features outperform local features by almost eight



TABLE 1. SUMMARY OF OUR DATASETS. ALL DATASETS HAVE FIVE ROOMS (CLASSES). MAJORITY-CLASS BASELINES ARE SHOWN. FOR HOUSE 3,
THREE ROUNDS WERE TAKEN WITH AN HTC AMAZE PHONE, ONE WITH A DIGITAL SLR CAMERA, AND ONE WITH A SAMSUNG GT-S5360L PHONE.
Enrollment photos Test photo streams
Native #of # of Mean Baseline Native # of Baseline
Dataset Device resolution images rounds images/room accuracy | Device resolution images accuracy
House 1 iPhone 4S SMP 184 3 61 22.8% | iPhone 4S SMP 323 29.8%
House 2 iPhone 5 SMP 248 3 83 29.9% | iPhone 5 SMP 629 31.0%
House 3 (see caption)  3-6MP 255 5 85 30.2% | HTC Amaze 6MP 464 20.9%
Workplace 1 | Motorola EVO  5MP 733 3 244 244% | HTC Amaze 6MP 511 32.1%
Workplace 2 | HTC Amaze 6MP 323 5 108 254% | HTC Amaze 6MP 457  28.9%
TABLE II. LOCAL FEATURE CLASSIFIER TRAINED AND TESTED ON ENROLLMENT IMAGES USING CROSS-VALIDATION.
Native-sized images Downsampled images (1MP)
Baseline | Classification Mean # of # of images # of images | Classification Mean # of # of images # of images
Dataset accuracy accuracy features with ties  with 5-way tie accuracy features with ties with 5-way tie
House 1 22.8% 98.4% 297 2 0 98.4% 249 0 0
House 2 29.9% 76.2% 209 27 8 77.4% 66 50 21
House 3 30.2% 95.7% 59 12 5 96.9 % 352 2 0
Workplace 1 | 24.4% 84.0% 33 115 45 86.8% 31 133 52
Workplace 2 | 25.4% 92.9% 104 15 6 93.5% 44 39 17
Average | 265% | 89.4% — — — | 90.6% — — —
TABLE III. GLOBAL FEATURE CLASSIFIER TRAINED AND TESTED ON ENROLLMENT IMAGES USING CROSS-VALIDATION.
Baseline Bags Dense bags Bags of RGB
Dataset accuracy | of SIFT of SIFT HOG LBP GIST  histogram
House 1 22.8% 89.1% 81.4% 82.7%  41.6% 71.9% 57.4%
House 2 29.9% 49.7% 78.8% 78.7% 52.8% 64.8% 47.9%
House 3 32% 89.4% 68.9% 66.2% 51.9% 65.5% 57.4%
Workplace 1 24.4% 83.2% 93.9% 88.8% 762% 85.1% 79.8%
Workplace 2 25.4% 73.8% 83.1% 832% 67.5% T72.2% 55.0%
Average \ 26.5% \ 77.0% 81.2% 79.9% 58.0% 71.9% 59.5%

percentage points. On average, the classifiers outperform a
majority baseline classifier by almost 2.5 times. The HMM
provides a further and relatively dramatic accuracy improve-
ment, improving average accuracy from 64.7% to 81.9% for
local features, and from 64.3% to 74.8% for global features.
Combining the two types of features together with the HMM
yields the best performance with an average accuracy of
89.8%, or over 3.1 times the baseline.

Figure 5 shows some sample images from the House 2
stream, including a random assortment of correctly and incor-
rectly classified images. We can speculate on the cause of some
of the misclassifications. When images are collected looking
through windows or doors such that little of an enrolled space
is captured in the image, the classifier confidence is intuitively
reduced (see panels 1, 4, and 7 of the misclassified examples in
Figure 5). Similarly, high degrees of occlusion in images will
frustrate classification attempts (panel 3 of the misclassified
examples demonstrates this).

Human interaction. An advantage of our probabilistic ap-
proach is that it can naturally incorporate additional evidence,
if available. For instance, a lifelogging application or the
device operating system could ask the user to help label
ambiguous images. We simulated a simple version of this
approach by having the HMM identify the least confident of
its estimated labels (i.e., the image with the lowest maximum
marginal probability). We then forced that image to take on
the true label by modifying P(l;|I) in Equation (2) to be 1

for the correct label and O for the incorrect labels, and re-
ran inference. We repeated this process 10 times, simulating
PlaceAvoider asking the user to label 10 images. The last
column of Table IV presents the results, showing a further
increase in performance over the fully automatic algorithm,
achieving over 90% accuracy for four of the datasets, and 95—
100% accuracy for three of them. An additional enhancement
would be to update the visual models themselves based on
these new labeled images, but we leave this for future work.

Online inference. Note that our HMM assumes that the entire
photo stream is available — i.e., in labeling a given image, the
classifier can see images in the future as well as in the past.
This scenario is reasonable for photo-sharing, lifelogging, and
other applications that are tolerant to delay. For applications
that require online, real-time decisions, the HMM can be
modified to look only at the past (by running only the forward
pass of the Forward-Backward Algorithm), but at a reduced
accuracy: average HMM performance across the five datasets
falls from 89.8% to 82.6% in this case.

Impact of scene occlusion. First-person cameras capture
dynamic scenes with moving objects and people, and this
often causes large portions of a scene to be occluded by
foreground subjects in the photos. These occlusions increase
the difficulty of indoor place recognition, but we expect them
to be commonplace — in fact, potential occlusions may be the
basis for defining a room as sensitive in a privacy policy. (For



TABLE IV.  CLASSIFICATION OF TEST STREAMS BY THE SINGLE IMAGE CLASSIFIERS AND VARIATIONS OF THE HMM.
Single image classifier Joint stream classifier
Baseline Local Global Local Global  Local+global Local+global+

Dataset accuracy | features features features  features features human interaction
House 1 29.8% 52.9% 48.3% 89.2% 64.0% 89.2% 95.0%

House 2 31.0% 41.8% 49.1% 55.0% 56.4% 74.6% 76.8%

House 3 20.9% 81.5% 80.0% 97.4% 86.9% 98.7 % 99.8%
Workplace 1 32.1% 75.9% 74.6% 75.5% 89.2% 87.7% 91.0%
Workplace 2 | 28.9% 71.6% 69.4% 92.3% 81.2% 98.7 % 100.0%
Average | 285% | 64.7% 64.3% | 81.9% 74.8% 89.8% | 92.5%

Correct

Incorrect

Fig. 5.

TABLE V. EFFECT OF IMAGE OCCLUSION ON CLASSIFICATION
ACCURACY, ON OUR SYNTHETIC DATASET BASED ON WORKSPACE 2.

Single image Photo streams
% of occluded Local  Global | Local+ Local+global+
images classifier classifier | global interaction

0 71.6% 69.4% | 98.7% 100.0%
10 67.6% 68.7% | 98.9% 100.0%
20 67.2% 68.3% | 99.6% 100.0%
30 64.6% 69.8% | 99.8% 100.0%
100 68.0% 69.8% | 98.5% 100.0%

instance, empty bathrooms are usually innocuous but photos
of people in the bathroom may cause concern.)

While our streams include some incidental occlusions, we
wanted to measure the effect that more frequent occlusions
would have on classifier accuracy. To do this, we generated
a dataset with simulated occlusions, superimposing a human
silhouette (which blocked about 30% of the image) on varying
fractions of the images. Figure 6 shows examples of our
simulated images, and Table V presents accuracies on these
images on the Workspace 2 dataset. (We chose this dataset
because it had relatively high performance with both types
of individual features and the stream classifier.) We observe
that local feature performance declines as more images are
occluded, while the accuracies of the global features and HMM
are relatively stable, decreasing by less than a percentage point.
We save more extensive investigations of occlusion by real
objects and people for future work.

Some sample classification results from the House 2 stream, showing correctly classified (top) and incorrectly classified (bottom) images.

Fig. 6. Sample images from our dataset with synthetic occlusions.

D. Retrieving private images

The experiments so far have cast our problem as one of
image classification: given an image known to have been taken
in one of n rooms, identify the correct room. The main goal
of PlaceAvoider, however, is not necessarily to identify the
exact room, but to filter out images taken from some subset of
potentially private rooms. This is an image retrieval problem:
given a stream of images, we wish to retrieve the private
ones, so that they can be filtered out. Since our classification
algorithms are imperfect, the user could provide confidence
thresholds to select between a highly conservative or a highly
selective filter, depending on their preferences and the degree
of sensitivity of the spaces.

The top row of Figure 7 shows precision-recall curves
for retrieving private images from each of our five datasets.



To generate these, we conducted five retrieval tasks for each
dataset, one for each room, and then averaged the resulting
P-R curves together. For the local and global features we
used the maximum value (across classes) of Pr(l;|I) and
Pq(1;|T), respectively, as the free parameter (confidence), and
for the HMM we used the maximum marginal (across classes)
of P(l;|I1,...,I,,) computed by the Forward-Backward algo-
rithm. We see that for House 1, House 3, and Workspace 2
we can achieve 100% recall at greater than 70% precision,
meaning that all private images could be identified while
removing only 30% of the harmless images. For Workspace 1
we can achieve about 90% precision and recall, whereas for
the very difficult House 2, about 40% precision is possible at
90% recall.

The above results reflect the closed scenario, where we
assume that the user has enrolled all possible rooms in the
space. As a preliminary evaluation of the open locale scenario,
we created synthetic streams in which we inserted randomly
chosen segments of streams from other datasets, such that
about 20% of the images in these noisy streams were in
the ‘other class’ category. This can be interpreted as a user
collecting 80% of their images in spaces that are enrolled,
which is arguably reasonable. In practice, the distribution of
time spent amongst spaces in a building will likely be an
individual function. The bottom row of Figure 7 shows the
precision-recall curves in this case. While retrieval accuracy
degrades somewhat compared to the original streams, in three
of the datasets (House 3 and the two Workspaces) we still
observe nearly 100% recall at greater than 80% precision. We
posit that for the vast amounts of photos obtained in lifelogging
applications, such precision values are reasonable as they still
leave a large fraction of harmless images for sharing. The
blocked photos can always be reviewed manually to identify
such false classifications. While these results are promising,
evaluation on larger-scale, realistic first-person datasets will be
needed to characterize performance in real-world open locale
scenarios.

E. Computational performance

Our current version of PlaceAvoider is a proof of concept,
implemented on general purpose workstations with a mixture
of unoptimized C++, Matlab, Python, and R code. This code
takes on average 18.421 seconds to process an image on a
2.6GHz Xeon server. This performance may be reasonable
for cloud-based applications with offline computation, but ill-
suited for realtime use. We suspect that this running time
could be improved significantly through simple optimizations
(like re-writing all code in C++). We now discuss algorithmic
refinements to improve the usability of PlaceAvoider with
mobile devices.

Decreasing local feature matching time. A disadvantage of
our local feature classifier is that the minimizations in Equa-
tion (1) can be computationally intensive, requiring several
seconds per image. However, there is inevitable redundancy
between enrollment images, because each of our enrollment
datasets consists of several rounds of photo collection and
there is spatial overlap between images. We developed four
techniques for reducing the runtime and space requirements
of the classification algorithm by attempting to remove the
redundancy from these room models:
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TABLE VI AVERAGE SINGLE IMAGE CLASSIFICATION TIMES,
INCLUDING BOTH FEATURE EXTRACTION AND CLASSIFICATION FOR
HOUSE 3 ENROLLMENT IMAGES.

Classifier Time (s) Accuracy
Global dense bags of SIFT 14.325 68.9%
Local SIFT 2.517 95.7%
Global bags of HOG 1.110 66.2%
Global LBP 1.107 51.9%
Local SIFT (10% blacklists) 0.996 55.2%
Global bags of SIFT 0.469 89.4%
Global GIST 0.247 65.5%
Global RGB histogram 0.063 57.4%

K-means performs k-means clustering on the set of
SIFT features in a room model, representing the room
simply as the set of cluster centroids;

Locality sensitive hashing 1is a dimensionality-
reduction technique that attempts to preserve spa-
tial relationships between the hashed and unhashed
points [21]. We run LSH and then collapse each hash
bin having multiple points into a single descriptor;

Approximate Nearest Neighbors scans through the set
of descriptors, iteratively collapsing together the two
closest descriptors until a specified number of target
descriptors is reached. ANN [2] is used to make this
process efficient;

Random sub-sampling simply chooses a subset of the
SIFT descriptors at random.

We evaluated these four model reduction techniques by
setting their parameters such that each one reduced the number
of descriptors by a factor of five on a subset of our Workspace
2 dataset. We found that of these techniques, ANN suffered
the worst accuracy (73.7% compared to 93.2% with the full
model), followed by k-means (87.3%) and hashing (87.3%).
Surprisingly, random subsampling actually worked the best of
these techniques (87.9%).

Classifier running times. Table VI presents the average run-
ning time for our various local and global feature classifiers,
including the local classifier with full room models and one
randomly subsampled to 10%. As a point of reference, we also
show the accuracy of each individual feature type in classifying
images from the House 3 cross-validation dataset. We observe
that most of the computation time is due to one feature, global
Dense Bags of SIFT, due to the fact that it has to compute
SIFT descriptors along a dense image grid. The other features
show a general trade-off between accuracy and running time:
local feature matching performs best (95.7%) but requires the
most time (2.5 seconds), whereas RGB histograms require only
a few milliseconds per image, but the accuracy is quite low
(56.3%).

Once the local and global classifiers are done, stream
classification using HMMs is very fast, taking about 0.077
seconds to classify an entire stream or about 0.1 milliseconds
per image. HMM inference takes asymptotic time linear in the
number of images and quadratic in the number of rooms.

A lightweight classifier. From the results in Table VI we
hypothesized that we could build a lightweight classifier that
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Fig. 7. Top: Precision-Recall curves for retrieving images from a given room, averaged over the five rooms, for each of our five datasets. This represents image
retrieval in the closed locale scenario. Bottom: P-R curves for retrieving images from our noisy dataset with images from other rooms injected into the stream,

simulating the open locale scenario.

works nearly as well as the full classifier. We thus built
a simple classifier consisting of one local and one global
feature, chosen by their low computation demand compared to
accuracy: local subsampled features and global bags of SIFT.
We tested this lightweight classifier on the Workspace 2 and
House 3 datasets, finding that it reduces the average classifi-
cation accuracy from about 99.9% to 90.5%, but reduces the
computation time by over an order of magnitude (from 18.421
seconds to 1.465 seconds per image). Such a lightweight
classifier could likely be run on a mobile device.

V. DISCUSSION

Cloud vs. local computation. As discussed in Section IV-E,
limited mobile computation resources may impact the per-
formance of PlaceAvoider’s image classification. While
lightweight classifiers (suitable for the mobile device) provide
reasonable accuracy, maximal performance for realtime appli-
cations could be realized by outsourcing computation to the
cloud, similar to apps on mobile devices today. This requires
network connectivity and sufficient bandwidth resources for
image uploads. As shown in Table II, our classifiers perform
well with down-sampled images, thus reducing bandwidth
requirements.

An implementation of PlaceAvoider may default to classifi-
cation on the cloud, but utilize a lightweight onboard classifier
(Section IV) during periods of wireless unavailability. Cloud-
based photo-sharing sites could also integrate the full version
of PlaceAvoider to aid in labeling of images and content based
image retrieval.

Privacy of other people. PlaceAvoider offers users a degree of
useful control over images collected in their personal spaces,
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but this control is limited only to the person’s own camera.
People’s concerns of imaging privacy are often due to the
presence of cameras that are not their own. To mitigate these
concerns, we would ideally allow people to specify policies for
other cameras, even when they are owned by other people. For
example, people may share their policies with other users (e.g.,
social or professional contacts), or use a central repository
for such sharing (e.g., Bob enrolls his office in PlaceAvoider
to prevent Mary from taking a photo in that space with
her phone). Such protocols for surveillance cameras, a more
tractable problem, have been proposed [4], [48]. A major
challenge with such an approach is that people may not want
to share their stream and/or enrollment photos due to privacy
concerns, and even sharing abstract models may reveal some
private details. Halderman et. al. address this concern in their
system that requires unanimous consent amongst bystanders in
a privacy-preserving way [22]. Policies may be enforced using
models based on secure SIFT (based on features extracted from
homomorphically encrypted images), which has been shown to
perform well [25].

Improving image classification. While PlaceAvoider generally
performed well in our evaluation, it does not yield perfect
classification accuracy and thus has much room for improve-
ment. For example, we investigated the lower performance of
datasets for House 1 and House 2, and found a high negative
correlation between classifier performance and the variance
in the quantity of extracted SIFT features among spaces in
the dataset; classifier bias is induced towards rooms that have
more SIFT features. Minimizing these bias effects amongst
enrolled spaces should significantly improve overall classi-
fier performance. Our local feature extraction uses grayscale
images, as is standard practice; integrating color information
may improve performance significantly. Finally, we employed

02 04 06 08 1.0



no conditioning, noise-reduction, filtering, or other processing
of images before feature extraction, and pre-processing steps
could improve classifier performance. We leave these areas of
improvement for future work.

Leveraging other characteristics. The image classification
techniques we use offer reasonable performance to analyze
large streams of images. More sophisticated analysis is possi-
ble and could offer improvements to PlaceAvoider. For exam-
ple, people could enroll specific objects in a room, and these
could be used to identify sensitive spaces (e.g., if a particular
art object or high-end electronics device is detected in an
image). While our enrollment process is not burdensome, the
system would be improved by bootstrapping available images
to eliminate the collection of separate enrollment images.

Other semantic, scene-level analyses could offer better
identification of sensitive images, even in areas that have
not been enrolled, using scene classification algorithms [56],
[41], [33]. For instance, we could build systems that try
to estimate a general fype of room, like kitchen, bathroom,
etc., based on general models of these spaces (i.e. what
these rooms typically look like). While this general scene
categorization would be desirable, computer vision work has
shown that recognizing specific targets is much more accurate
than recognizing categories of objects; e.g., it is much easier
to build a specific model of your bathroom than a general
model to recognize any bathroom. Another possibility is to
analyze the poses and activities of people in the scene to
provide additional evidence to the classifier, using work on
people and pose recognition [11], [14]; photos showing people
in distress, in compromising poses, or wearing little clothing
could be flagged as sensitive. We leave such an exploration to
future work.

VI. RELATED WORK

Lifelogging issues and privacy. Allen [1] and Cheng et al. [8]
demonstrate that there is a maelstrom of legal issues related
to lifelogging, many of which are privacy related. Specifically,
Allen discusses how in the United States, cloud-stored life logs
are not afforded 4th and 14th Amendment protections, and
this raises the importance of controlling which information to
log. The expert opinions on lifelogging privacy issues were
validated by a user study that was performed to measure per-
ceptions of lifelogging [28]. They found that users want control
over the data that is collected and stored, thus motivating the
need for technologies like Place Avoider. The existing work that
seeks to preserve privacy for lifelogging is notably limited.
Chaudhari et al. [7] offer a protocol to detect and obfuscate
faces in lifelogged video streams. Interestingly, the bulk of
cited work on lifelogging was framed with then-current tech-
nology. Current lifelogging devices and smartphone lifelogging
apps (like Saga’) are much more advanced in their collection
capabilities while not addressing many privacy concerns.

Camera permissions. Systems like PlaceRaider [52] demon-
strate the need for controls on the use of cameras on smart-
phones and problems that can stem from coarse-grained per-
missions. The inadequacy of coarse-grained permission sys-
tems for sensitive resources has been well documented. Bugiel

7Saga: http://www.getsaga.com
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et al. include a survey of least-privilege-preserving approaches
in their XMandroid paper [5] and propose a defense system to
prevent privilege escalation. Privilege escalation is an orthogo-
nal problem and has been addressed by systems that automat-
ically prevent installing programs based on permissions [16],
[12] or that monitor inter-app communications [19], [6] among
other approaches.

Systems have been proposed that can enforce fine-grained
permission policies including Apex [40], Porscha [42], and
CRePE [10]. Similarly, labeled images can be tracked with
mechanisms like TaintDroid [15] and Paranoid Android [44].
PlaceAvoider differs from these systems in that it can dynam-
ically assess the sensitivity of sensor-data content.

Roesner et al. [46] implement a system where the enu-
meration of fine-grained policy rules is not necessary, instead
electing to capture user intent at the time of resource use. This
approach helps in applications where users deliberately tap a
button to take a photograph and are explicitly aware of the
specific photo being taken. Our work addresses precisely the
opposite scenario where photos are taken in the background
and thus intention-based access control does not provide a
suitable defense.

Imaging defenses. There have been very few systems anal-
ogous to PlaceAvoider that seek to control the collection of
imagery. Truong et al. [53] describe a third-party system where
offending CCD or CMOS cameras in a space can be detected
and disabled via a directed pulsing light. While this system
provides an interesting and useful way to prevent the use of
cameras, it requires specialized and dedicated infrastructure
to be installed in each sensitive space. PlaceAvoider allows
similar functionality to be integrated within the camera.

The DARKLY system [26] presents a novel approach to
add a privacy-protection layer to systems where untrusted
applications have access to camera resources. DARKLY in-
tegrates OpenCV within device middleware to control the
type and amount of image content available to applications.
This approach applies the principle of least privilege to image
information, albeit in a different manner than PlaceAvoider.
For example, a policy may exist that permits an application
only to have access to the number of faces detected in any
image. Regardless of context, when invoking the camera with
DARKLY, this application would receive only select parame-
terized image information (e.g., the number of detected faces).
PlaceAvoider, however, enforces policies based on image
context derived from image content. While solving different
problems, DARKLY and PlaceAvoider could potentially be
combined — e.g., analysis by PlaceAvoider could inform
transformations applied by DARKLY.

Inferring location from images. Inferring location or user
activity from smartphone sensors is an active research area.
CenceMe [39] uses ambient audio and movement information
to infer activity and conversation type, but simply uses the
GPS service for location — recorded images are not used
for classification. CrowdSense @Place [9] does use computer
vision techniques (alongside processing of recorded audio) to
classify location amongst one of seven general categories (e.g.,
home, workplace, shops) — this system was not evaluated
for its ability to perform the specific scene recognition that
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PlaceAvoider performs but this approach would be useful to
identify general types of locations where privacy risks are high.

Much of this work is in the computer vision domain
for robotics applications. Robot topological localization tech-
niques often require specialized cameras that are incompatible
with form factors used by phones and lifelogging devices. Se
et al. use a Triclops stereo vision camera for their localization
techniques with robots [49], [50]. Similarly, Ulrich and Nour-
bakhsh use a specialized 360-degree panoramic camera that
operates in a fixed plane [54].

Even in the absence of such specialized cameras, local-
ization techniques for robot applications often leverage other
conditions that cannot be assumed for our use cases. Ledwich
and Williams offer a system that imposes strict constraints
on the training images that are unrealistic in the applications
that we propose [34]. Kosecka and Li propose a system [31]
that uses contiguous streams for training along with precision
odometry (instrumentation that measures distanced traveled
over time). Similarly, Jensfelt et al. developed a localization
system [27] that requires odometry or other dead-reckoning
sensors. While sensor arrangements on mobile devices are
increasing in sophistication and capability, these localization
solutions from the robotics domain are not directly applicable
given the dynamics of movement for mobile devices.

Recent work has studied geo-location in consumer images,
although most of this work has been limited to highly pho-
tographed outdoor landmarks where thousands or millions of
training images can be downloaded from the web [37], [51],
[20], [36]. An abstraction of absolute camera location seeks to
classify images based on the type of scene (e.g., indoors vs.
outdoors). Oliva and Torralba label scenes according to the
‘gist’ of the image by analyzing the distribution of spatial im-
age frequencies [41]. Subsequent work seeks finer granularity
by classifying the type of scene at a high level (e.g., living
room vs. bedroom) [56], [45]. The majority of work has con-
sidered well-composed, deliberately-taken images, although
some very recent papers in the computer vision literature have
considered first-person video. This work includes selecting
important moments from raw first-person video [35], jointly
recognizing and modeling common objects [18], inferring the
camera owner’s actions from object interaction [43], and even
using first-person video to collect psychological data about
people’s visual systems in naturalistic environments [3]. None
of this work considers privacy issues as we do here, although
in future work we plan to leverage some of these approaches
to assign semantic labels that have privacy meanings.

Indoor localization and positioning. The computational ex-
pense of inferring camera location with computer vision ap-
proaches applied to images may be mitigated partly through
localization and positioning methods to reduce search spaces.
A comprehensive survey of localization and positioning ap-
proaches is outlined by Hightower [23]. Most of these systems
require external infrastructure (e.g., audio or electromagnetic
beacons) or a dense constellation of cooperating devices [47],
and a priori knowledge of the environment (e.g., maps) is
often required. Some approaches rely less on infrastructure
and operate in a peer-to-peer ad hoc manner. Kourogi [32]
developed a system that requires no infrastructure, but uses
sensors that are much more sophisticated than what is available
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in consumer mobile devices. Woodman et al. developed a
system [55] that performs effective localization, but requires
a sensor array affixed to an individual’s foot. As discussed in
Section I, camera location and the location of image content
is not necessarily the same; the PlaceAvoider classifier is
necessary to enforce privacy policies based on image content.

VII. CONCLUSION

We believe that as cameras become more pervasive and
as the background collection of imagery becomes more pop-
ular, people’s privacy is put at increasingly greater risk. We
have presented an approach for detecting potentially sensi-
tive images taken from first-person cameras in the face of
motion, blur, and occlusion, by recognizing physical areas
where sensitive images are likely to be captured. Owners of
cameras can review images from these sensitive regions to
avoid privacy leaks. We believe this is an important first step
in this increasingly important area of privacy research.

Our results are promising and may be good enough for
some applications, but our classifier accuracies are likely
insufficient for others, and the problem of highly accurate
indoor visual place classification from first-person imagery
remains open. We plan to continue investigating computer
vision techniques that estimate meanings of images to better
identify potentially sensitive photo content and situations. We
also plan to investigate privacy concerns of bystanders — the
people being captured within the images — because as devices
like Google Glass become more common in society, bystanders
need ways to actively protect their own privacy.
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