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ABSTRACT
Low-cost, lightweight wearable cameras let us record (or
‘lifelog’) our lives from a ‘first-person’ perspective for pur-
poses ranging from fun to therapy. But they also capture pri-
vate information that people may not want to be recorded,
especially if images are stored in the cloud or visible to other
people. For example, recent studies suggest that computer
screens may be lifeloggers’ single greatest privacy concern,
because many people spend a considerable amount of time in
front of devices that display private information. In this paper,
we investigate using computer vision to automatically detect
computer screens in photo lifelogs. We evaluate our approach
on an existing in-situ dataset of 36 people who wore cameras
for a week, and show that our technique could help manage
privacy in the upcoming era of wearable cameras.
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INTRODUCTION
Our world is filled with cameras, from surveillance systems to
cameras built into phones, laptops, and gaming systems, and
wearable cameras like Google Glass [13], Narrative Clip [29],
and Autographer [2] will make them even more pervasive.
These wearable devices let people record or ‘lifelog’ visual
diaries of their lives from a ‘first-person’ perspective, in order
to treat memory loss and dementia [14], to enhance public
security and accountability [8], or just for fun.

But lifelogging cameras collect thousands of images every
day, including photos with embarrassing, sensitive, or private
information. Of course, what is considered private differs be-
tween people and contexts, but recent studies on lifelogging
have found that the presence of certain objects, especially
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Figure 1. Random images from an author’s lifelog, showing that com-
puter and phone displays with private information are common.

computer monitors, raises heightened concern [15,16]. Given
that the average American spends over five hours a day on
digital devices [10], displays are very common in most lifel-
ogs. For example, Figure 1 shows images sampled uniformly
at random from one of our personal lifelogs; three happened
to capture digital displays with private information including
an e-mail, a web search, and financial records.

The huge volume of images collected by wearable cameras
makes it difficult for people to maintain control over whether
and with whom these images are shared. Private image con-
tent may be subtle (e.g., account numbers visible only af-
ter zooming in), causing people to accidentally share private
information through a ‘misclosure’ [4]. Many wearable de-
vices automatically upload images to the cloud to help peo-
ple store and share images, which further amplifies privacy
concerns. Uploading photos that capture even incidental aca-
demic or health records may violate the law, since there are
often strong legal protections against disclosing such records.

In this paper, we study the feasibility of using automated
computer vision techniques to identify monitors appearing in
lifelogging images, so that these images can be flagged for
user review. Such a system could avoid the need for peo-
ple to manually tag each image [21], or to annotate or mod-
ify their physical spaces in order to make computer moni-
tors easy to detect [31, 33], and would complement systems
that detect photos taken in sensitive places like bathrooms or
bedrooms [36] or when people are performing certain activi-
ties [6]. Automatically detecting objects in images is a diffi-
cult task, and is even more difficult for wearable camera im-
ages that are often poorly composed, blurry, and out-of-focus.
We investigate the extent to which emerging state-of-the-art
computer vision techniques based on deep learning [23] can
identify monitors in real lifelogs, using a dataset collected by
36 participants during a week-long, in situ study [16]. To our



knowledge, we are the first to attempt monitor detection in
first-person images, and among the first to apply deep learn-
ing to lifelogging. The experiments suggest that despite the
difficulty of the task and the data, we can detect monitors with
high enough accuracy to provide useful filtering tools.

RELATED WORK
Wearable cameras have been studied for many years [14, 24,
28, 37–39] but their recent consumer availability has raised
questions about their societal and privacy impact. Hoyle et
al. [16] explore privacy issues and concerns of lifeloggers,
while Denning et al. [11] consider the privacy implications of
the bystanders who are photographed by wearable cameras.
Thomaz et al. [37] study the balance between eating behav-
ior and privacy information in first person images. Roesener
et al. [32] consider privacy and security in augmented real-
ity devices as a special case of wearable cameras. Caine [4]
more generally explores how people mistakenly share elec-
tronic information with unintended people.

Some techniques have been proposed for restricting where,
when, and what image and sensor data is collected. For
instance, Virtual Walls [20] suppresses sharing sensor data
based on the physical metaphor of transparency, while
Langheinrich [25] uses “beacons” to push sharing preferences
to nearby devices. Specific to cameras, Roesner et al. [33]
embed policies in the environment using physical tags that
mark objects and places that should not be photographed,
while Templeman et al. [35] propose a conceptual framework
in which people specify policies based on automatically de-
tected image content and context. In the embedded system se-
curity domain, Scanner Darkly [18] and OS Recognizers [17]
control how image data is released to untrusted apps to pro-
tect against leaks. Caine et al. study how older adults can
control video monitoring of their activities at home [5].

We focus on the complementary problem of automatically
recognizing the image content needed to implement these
frameworks. Perhaps the most related papers are Temple-
man et al. [36], which uses computer vision to detect when
lifeloggers enter private spaces like bathrooms or bedrooms,
and Castro et al. [6], which recognizes which activities the
lifelogger is performing. Like us, both of these papers have
to contend with the unique challenges of computer vision in
first-person imagery, including blurry, poorly composed im-
ages, and training datasets that are small and difficult to col-
lect. While those papers estimate where the photo was taken
and what the lifelogger was doing, we consider the comple-
mentary problem of detecting what is in the image itself.

As a first step, we investigate the particularly important [16]
problem of detecting monitors in lifelogging images. Like
Castro et al. [6], we apply deep learning based on Convolu-
tional Neural Networks [26], which have recently emerged
as the state-of-the-art for object recognition [23] by signif-
icantly outperforming traditional visual features and classi-
fiers [7, 9, 27] like those used by Templeman et al. [36]. Also
as in Castro et al., we test on real lifelogging images collected
by in-situ user studies, although their dataset was collected
by a single participant over several months whereas ours was
collected by 36 participants over a single week. Thus the

datasets are also complementary: ours is perhaps more rep-
resentative of how the system would perform across a diverse
set of people and environments, whereas theirs is likely more
representative of temporal variations.

OUR APPROACH
Detecting computer screens is a specific instance of ‘visual
object category detection,’ in which the goal is to recognize
instances of broad classes of objects (e.g., all cars, not one
particular make and model). Different screens have differ-
ent appearances, of course, and even the same display looks
different across images due to changes in lighting, camera an-
gle, and screen content. A key challenge is to build recogni-
tion models that are robust against such variations while still
sensitive to features that differentiate monitors from similar
objects like picture frames, windows, and paper documents.

We apply Convolutional Neural Networks (CNNs), which
have recently emerged as the state-of-the-art technique in vi-
sual recognition [23]. Instead of using hand-crafted algo-
rithms that convert pixel values into statistical features (e.g.,
SIFT or HOG [9, 27]) for input into classifiers like Support
Vector Machines [7], CNNs analyze the raw pixel values
themselves, in effect learning low-level features automati-
cally and simultaneously with the high-level classifier. These
CNNs are similar to the feed-forward neural networks that
have been studied for decades [26], but are much deeper (a
dozen or more layers) with many more parameters (hundreds
of millions), and training them requires greater computational
resources (a high-end workstation with a GPU).

Datasets
We collected two datasets to train and test our monitor de-
tector. Author was collected from our personal lifelogs taken
by a mixture of devices including Google Glass, Narrative
Clip, and Autographer, and consisted of 18,798 images. User
study is from our previous in situ study in which 36 under-
graduate students wore wearable cameras for a week [16] and
consists of 2,742 images. (This study was approved by IRB,
with careful controls to protect participant and bystander pri-
vacy and to address the ethical and legal concerns of a study
of this type; please see our previous publication [16] for de-
tails.) Both datasets were collected under realistic, uncon-
trolled conditions; for example, User study includes a wide
variety of types, brands, and models of displays that reflects
the diversity of computers that students own and use. To gen-
erate ground truth labels, we manually reviewed each of the
over 20,000 images. An image was labeled as a positive ex-
emplar even if only a small portion of a screen was visible
(since private information could be revealed in any part of
a screen). We defined “computer monitor” to include desk-
top and laptop computer displays, but not to include phones,
tablets, TVs, or other electronic devices.

Training the models
We outline our approach here; see our technical report [22]
for details. We used the open-source Caffe software [19] to
create and train our monitor detector. We adopted the network
structure of Krizhevsky et al. [23], which takes raw RGB
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Figure 2. Left: Precision-Recall curves for screen detection. Right: All
of the incorrectly classified Author images.

pixel values as input, and passes them through five convo-
lutional layers, three fully connected layers, and several max-
pooling layers. The complete network includes about 2.3 mil-
lion neurons and 60 million learned parameters. Learning so
many parameters requires a huge training dataset, typically
millions of images versus the thousands in ours. We tried sev-
eral techniques to address this, including downloading Flickr
images tagged “monitor,” but found that these images were
so different from lifelogging images that they did not help. In
the end, we applied fine-tuning [30] by starting with a CNN
pre-trained on ImageNet [34], even though it consists of con-
sumer images instead of lifelogging photos, and then used
those parameters as initialization to re-train using our rela-
tively small dataset. The intuition behind this is that there
is enough structure in the visual world that a CNN trained
for one problem learns useful low-level features that apply to
other unrelated problems. Our trained models are available at
http://vision.soic.indiana.edu/screenavoider/.

EXPERIMENTS
We first used the Author dataset, which we partitioned into
9,986 training images and 1,842 test images and sampled
to have an equal class distribution. The classifier achieved
99.8% accuracy compared to the 50% baseline on its task of
deciding whether each image contained a monitor. In fact,
there was only one false negative and three false positives,
all shown in Figure 2. The false negative image is of poor
quality, such that no private information is visible, while two
of the false positives include hardcopy documents that look
similar to screens of text. This experiment has particularly
high accuracy because while the CNN must classify unseen
test images based on an independent set of training images,
the training and test images are sampled from photo streams
of the same participants and thus include similar images.

In a much more challenging experiment, we trained on 9,986
images from the Author dataset, but tested on the completely
independent User study dataset from 36 lifeloggers. The
class distribution in this case reflects the true distribution in
the study, with 28.6% of images having screens. Our CNN
achieved 91.5% accuracy, compared with 71.4% for the ma-
jority class baseline (that always predicts ‘no-monitor’). We
cannot publish the IRB-controlled user study images them-
selves in order to show incorrect classifications, so we manu-
ally characterize them instead. Of the 117 false negatives, the

top four (not mutually exclusive) failure modes were com-
puter screens that: (1) displayed photorealistic video games
(49.6%); (2) were less than half visible (48.9%); (3) were sig-
nificantly out of focus (35.0%); and (4) were showing other
photorealistic content like movies, sports, and TV (12.8%).
Even humans have difficulty discriminating some of these
(e.g., between a photo displayed on a monitor and a photo
print in a physical frame). Of the false negatives, only 6.8%
(about 0.3% of the full test dataset) actually displayed ap-
plications that potentially contain sensitive content (specifi-
cally Skype (n=1), Microsoft Word (n=2), Facebook (n=3),
and Adobe Illustrator (n=2)). The top causes of the 116 false
positives were physical windows (33.6%), framed objects like
photos and mirrors (32.8%), and screens of devices like TVs
and tablets (16.4%) which we counted as false positives, but
in practice might be considered true positives.

Alternatively, we can view this problem as a retrieval rather
than a classification task. Figure 2 (left) adopts this view,
presenting Precision-Recall curves for the two experiments
described above. The curves explicitly show the trade-off
between precision and recall so that the best point could be
selected depending on the application. For example, in the
difficult User study dataset, we can retrieve 88% of screen
images with a precision of 80%, or be more conservative and
catch 95% of screen images with a precision of about 60%.

DISCUSSION

Classifier accuracy and performance
Our goal in this paper is to test the feasibility of automatically
detecting screens. While far from perfect, our results suggest
that modern classifiers are accurate enough to help manage
lifelogging privacy, especially because they allow balancing
between precision and recall. For example, while finding
most photos with monitors (high recall) may be important,
moderate precision is often acceptable, since deleting a few of
the thousands of non-monitor photos captured each day may
not matter. Even if recall is not perfect, we agree with Raval et
al. [31] that simply reducing the number of private photos can
significantly improve privacy for most people. Image filtering
could be performed in various ways, including in device hard-
ware to decide whether to take a photo, in device firmware to
control whether to share a photo with an untrusted app, or in
a trusted cloud service for flagging or censoring photos.

A system deployed at larger scale could improve our perfor-
mance significantly. We tested two extreme scenarios: train-
ing and test data sampled from the same lifelogs, and training
and test data from lifelogs of unrelated people. A practical
system could use the latter when a person first begins lifelog-
ging to ‘bootstrap’ the classifier, but then use feedback over
time to adapt to a specific person’s environment and lifestyle.
A deployed cloud-based system could also pool training im-
ages across users, building larger training sets than we could.

Our models were trained on a single workstation with a 16-
core CPU and NVidia Tesla K20 GPU in about 5 hours. Clas-
sifying an image required 0.12 seconds with a GPU and about
1.5 seconds with just a CPU. These computation require-
ments would push the limits of current wearable devices, but

http://vision.soic.indiana.edu/screenavoider/
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GPUs are beginning to appear in mobile devices, and in the
meantime most processing could be performed in the cloud
(similar to speech recognition on current mobile phones [1]).

Detecting screen content
Some people may want finer-grained control over which
screen images are flagged. For example, Hoyle et al. [16]
found that some gamers enjoy sharing lifelogged photos that
capture key moments in video games, but may wish to sup-
press photos displaying privacy-sensitive applications. As a
first step, we trained and tested CNNs to classify whether a
given lifelogging image of a screen is displaying Facebook,
GMail, Mac OS Messages, or another application. We used
9,986 Author images for training and a disjoint set of 6,868
Author images for testing, sampled to have equal class distri-
bution. The CNN achieved an accuracy of 54.2% compared
to the 25.0% baseline, and Figure 3 presents the confusion
matrix. This classification task is quite difficult, especially
because screens are often not fully visible; Figure 3 presents
some correctly classified sample images.

We also considered a more difficult five-way task in which
the classifier must both determine whether an image contains
a screen and if so, which application it is displaying, using
Author for training and User study for testing. Because the
test set consists of real lifelogging data, the class distribu-
tion is highly unbalanced; the accuracy for this experiment
was 77.7% compared to the 71.4% baseline (always predict-
ing no monitor). From the confusion matrix in Figure 3, we
see that the classifier performs well at the coarse task of in-
ferring whether a screen is present, but classification amongst
sensitive applications is much more difficult.

Easing the computer vision problem
A complementary direction for improving performance is to
mark screens themselves with labels that could be more read-
ily recognized by a vision algorithm. As a first step, we inves-
tigated rendering a real-time, machine-readable QR barcode
on the corner of the lifelogging person’s screen that embeds
information about which applications are currently visible.
Lifelogging images could then be scanned for this QR code,
which is a much easier problem than recognizing the monitors
themselves. We implemented a prototype system for Mac OS
X, using a 120x120 pixel QR codes configured for maximum

readability and error correction rendered by QRencode [12],
and ZBar [3] to recognize them in lifelogging images.

We evaluated the system on a separate set of 535 lifelogging
images collected by the authors, and found that the QR code
was successfully recognized in 85.6% of them. There were no
false positives and all successfully detected QR codes were
read with 100% accuracy, because it is virtually impossible
that a background image region spuriously satisfies the QR
specification. This approach could thus be a complement
to the fully automatic approaches described above, allowing
higher recognition rates but requiring special software to be
installed on any computers used by the lifelogger.

Generalizing our classifiers
We focused on displays of computers because they have been
identified as a greater privacy risk [16] than displays of other
devices (like phones or tablets). This is in part because mon-
itors are larger, and thus both more likely to be captured
by wearable cameras and more likely to be displaying pri-
vate content. However, our vision techniques are general and
can learn classifiers for other devices given sufficient training
data. Our classifiers could also be combined with comple-
mentary work on detecting where photos are taken [36] and
what lifeloggers are doing [6] to allow finer-grained privacy
controls based on both image content and context.

CONCLUSION
Wearable cameras are opening up exciting new applications,
but will also require new techniques to help people preserve
their privacy. In this paper we investigate whether modern
computer vision techniques could be used to automatically
detect private content in images. As a first step, we inves-
tigate detecting monitors, since prior work has shown that
private content displayed on monitors is among the greatest
privacy concerns of lifeloggers. We show that policies based
on the presence of computer screens in images can accurately
be enforced at a coarse level. While fine-grained policies de-
fined on the type of screen content would be more challenging
to enforce, we remain optimistic based on our initial results,
especially when characterizing ‘sensitive’ vs. ‘non-sensitive’
applications.

Much work remains to be done in this area, given the wide
variety of questions, challenges, and applications for HCI that
wearable cameras will introduce. Our paper is a first step
towards demonstrating that privacy challenges can be at least
partially addressed with easy-to-use automated solutions, by
demonstrating their feasibility in one specific but interesting,
important, and timely domain (detecting monitors in lifelogs).
We hope our paper will inspire more work in this emerging
area at the intersection of HCI, vision, and privacy.
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