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Abstract 

Infants are powerful learners. A large corpus of experimental 
paradigms demonstrate that infants readily learn distributional 
cues of name-object co-occurrences. But infants’ natural 
learning environment is cluttered: every heard word has 
multiple competing referents in view. Here we ask how infants 
start learning name-object co-occurrences in naturalistic 
learning environments that are cluttered and where there is 
much visual ambiguity. The framework presented in this paper 
integrates a naturalistic behavioral study and an application of 
a machine learning model. Our behavioral findings suggest 
that in order to start learning object names, infants and their 
parents consistently select a set of a few objects to play with 
during a set amount of time. What emerges is a frequency 
distribution of a few toys that approximates a Zipfian 
frequency distribution of objects for learning. We find that a 
machine learning model trained with a Zipf-like distribution of 
these object images outperformed the model trained with a 
uniform distribution. Overall, these findings suggest that to 
overcome referential ambiguity in clutter, infants may be 
selecting just a few toys allowing them to learn many 
distributional cues about a few name-object pairs. 

Keywords: infancy; early word learning; machine learning; 
Zipfian distribution. 

Introduction 

The natural environment is visually cluttered with multiple 

namable objects in view (Clerkin, 2017). To learn their first 

object names, infants must link a heard object name to the 

referent object (Bloom, 2000). But for any heard object name, 

from the infant’s perspective, there are multiple potential 

referents in view. This referential ambiguity has defined a 

major theoretical problem to be solved in early word learning 

(Quine, 1960). Despite a sea of clutter, infants already know 

the names of many objects by the time of their first birthday. 
We know this because they look to the named objects in 

laboratory tests (Bergelson, 2012; Swingley & Aslin, 2000) 

and because they begin to say object names in the contexts of 

those objects (Fenson et al, 1994). How does this work? The 

current paper integrates behavioral and modeling frameworks 

to explore how infants learn object names despite the 

referential ambiguity in their natural learning environments.  

One explanation for solving referential ambiguity is the 

distributional cues in the language and visual input (Aslin, 

2017). According to this explanation, infants track the 

frequencies of word-object co-occurrences to aggregate the 

most likely referent (Smith, Smith, & Blythe, 2011; 
Kachergis, Yu, & Shiffrin, 2017). A large collection of 

laboratory paradigms has demonstrated that infants can 

rapidly learn from distributional cues of visual and auditory 

input (e.g., Cartwright & Brent, 1997; Mintz, 2003; Mintz, 

Newport, & Bever, 2002; Reeder, Newport, & Aslin, 2013). 

However, it is still unclear how learning from distributional 

cues of words and objects in laboratory settings transfers to 

the distributional cues in the natural environment. Laboratory 

paradigms are typically highly controlled, presenting uniform 

word-object frequencies (Aslin, Saffran, & Newport, 1998; 

Kurumada et al., 2013). In contrast, for natural languages, 

word frequencies are known to follow a Zipfian distribution, 

in which a small number of words occur very frequently (e.g. 

boy, car), while many words occur rarely (Zipf, 1965). These 

so-called Zipfian distributions, are universal across human 

languages (Zipf, 1949; Piantadosi, 2014), including nouns 

and all words in infant-directed speech (Hendrickson & 

Perfors, 2018). Furthermore, recent studies show that even 

the distribution of objects in infants’ natural visual 

environments follow a Zipfian distribution, where a few 

objects appear highly frequently and most objects are rare 

(Clerkin et al., 2017). 

Nevertheless, the sensitivity of infants and adults to 

distributional cues highlights an intriguing, but as of yet 

untested, benefit for learning from Zipfian distributions. 

Theoretically, learning from a Zipfian distribution should be 

more difficult than a uniform distribution, as there is not 

enough information in a Zipfian distribution to link the 

referents for words that occur rarely (Blythe et al., 2010; 

Vogt, 2012; Reisenauer et al., 2013; Blythe et al., 2016). 

However, a recent adult study demonstrated that adults learn 

word-object links more easily from Zipfian distributions than 

from uniform distributions of word-object occurrences 

(Hendrickson & Perfors, 2018). Those results suggest that 

Zipfian distributions improve adults’ learning by providing 

more statistical cues for the highly-frequent words, which in 

turn reduces the referential uncertainty associated with the 

unknown rare words. Yet, how infants learn from Zipfian 

distributions is still unknown.  

The approach in this paper is that the natural training data 

for learning new object names are generated by the behaviors 

of the learner from the mature social partner who provides the 

521

mailto:djcran@indiana.edu


 

name. Here we demonstrate that during infant-parent 

interactions, objects being handled and named by the parent 

create Zipfian frequency distributions, in which very few 

events occur very frequently, forming a very small set for 

learning.  

Recent studies of infant naturalistic environments suggest 

that Zipfian distributions provide a balance between 

consistency of a few high-frequent events with diversity of 

rare events (Clerkin et al., 2017; Smith & Slone, 2018; 

Montag, Jones, & Smith, 2017). Here we hypothesized that 

the parent and infant consistently select to play with a few 

objects, generating a training data set balanced with rare 

exploration of diverse objects. In other words, parents’ and 

infants’ selective and exploratory behaviors naturally 

generate name-object experiences that form Zipfian 

distributions, which is hypothesized to reduce ambiguity and 

optimize learning.  

In this study we demonstrate infant naturalistic learning, 

while infants and parents were engaging with objects in a 

cluttered and an unstructured environment. The play sessions 

were recorded from the infant’s egocentric perspective. From 

these visual experiences we report the frequency distributions 

of the objects with which infants and parents engaged during 

toy play. We subsequently applied a machine learning model 

to evaluate the structure of the visual “training data” 

produced from these play experiences. The model was tested 

for detecting the play objects with a training dataset of 

uniform distributions compared to Zipf-like distributions of 

infants’ egocentric object views.  

Behavioral Methods 

To evaluate how infants learn early object names in a 

naturalistic environment, we conducted a toyplay experiment 

allowing infant-parent dyads to freely engage with object 

toys.   

Participants 

The final sample included 16 infant-parent dyads with 12 

month-old infants (8 female) ranging from 12.2 to 12.5 

months (M=12.3, SD=1.12) were included in the final 

sample.  

Stimuli and Experimental Setup 

Parents and their infants were invited to play in a naturalistic 

setting for a duration of approximately 10 minutes.  Parents 

and infants both sat on a carpeted floor in a playroom 

environment. To create an unstructured environment, a 

random assortment of 33 toys were randomly distributed on 

the floor (see Figure 1). The toy objects’ themes were not 

related in any particular way; thus, any selection and 

exploration of objects emerged naturally from infant and 

parent behaviors. The same toys were used in each session. 

The instructions were to play freely as they normally would 

at home.  

 

 
 

Figure 1: (A) Stimuli set. (B) Experimental setup (left to 

right) infant wearing a Looxcie camera, infant ego-centric 

views from camera during toyplay. 

Egocentric View 

To collect infant egocentric view, we used a commercially 

available, lightweight (22 g) wearable camera (Looxcie). The 

camera was secured to a hat that was custom fit to the infant 

so that when the hat was securely placed on the infant’s head, 

the lens was centered above the nose and did not move (see 

Figure 1). 

The head camera captured the scene in front of the viewer 

but did not provide direct gaze information, which in 

principle could be outside of the head camera image (Smith 

et al., 2015). However, head mounted eye-tracking studies 

have demonstrated that under active viewing conditions, 

human observers, including infants, typically turn both heads 

and eyes in the same direction and align heads and eyes 

within 500 ms of a directional shift to maintain head and eye 

alignment when sustaining attention (Yoshida & Smith, 

2008; Smith, Yu, & Pereira, 2011). Therefore, it can be 

expected that a high proportion of gaze during active viewing 

is highly concentrated in the center of the head camera image 

(Yoshida & Smith, 2008). 

Data Processing 

The raw videos were coded using Datavyu by sampling 

frames at 0.2Hz (1 frame every 5 sec; 2,008 frames total). To 

describe the dyadic behaviors of engagement with objects, 

the corpus of frames was coded for (1) objects in view,  (2) 

objects handled by the infant or parent and (3) objects named 

by the parent. The objects in view were defined as the number 

of objects in the field of view from the infant’s perspective. 

The objects handled  were coded for both the parents and 

infant and defined as any hand contact with objects.  Finally, 

parents’ speech was manually transcribed and then annotated 

for objects naming when objects were named explicitly 

(N=580). 

We measured the statistics for objects in parents’ and 

infants’ hands and parent naming events over the entire 10-

minute period. Since there were individual differences 

among the infants in terms of the objects they played with, 

we constructed rank-ordered frequency histograms (see  
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Figure 2). The rank-ordered frequency was measured 

independently for each infant and then combined since the 

most frequent object in view, handled or named differed for 

different infants. The objects are annotated by their rank-

ordered frequency ranging from the 1st most frequent to least 

33rd frequent object. 

Behavioral Results 

The experimental setup of dyadic play was visually cluttered 

as there were on average 13 objects in view every frame 

(Min=1, Max=30, M=13.18, SD=6.16). Figure 2 shows 

ranked order histograms of infant and parent object handling 

proportions, as well as parent naming proportions. The 

histograms display a Zipf-like pattern which is indicative of 

behavioral selectivity of objects in the scene. Specifically, 

these zipf-like distributions follow an approximate power-

law, in which a small set of objects are handled and named 

very frequently and most objects are rare. Six objects (Min=9, 

Max=19, M=13.70, SD=3.13) account for  over 80% of the 

total proportion of infant’s object handling events. Six 

objects (Min=9, Max=24, M=15.5, SD=3.8) account for over 

80% of the total proportion of parents’ object handling 

events. Eight objects (Min=10, Max=48, M=24.20, 

SD=10.23) account for over 80% of the total proportion of 

parents’ object naming events. These Zipf-like distributions 

likely reflect a balance between the parents’ and infants’ 
stability and exploration of objects, which may benefit object 

learning. 

Modeling Methods 
A machine learning model was used to test whether the 

distributional properties of infants’ visual object experience 

impacted learning. In particular we wanted to understand the 

learning mechanism by which infants learn new object names 

in clutter environments.  

The data 

The collected corpus of 2,008 infants’ egocentric views were 

used to construct two different toy object training sets, as 

detailed in Table 1.  Six of the objects were selected for our 

machine learning study: baby doll, ball, chair, bucket, boat, 

and duck (see Figure 1). One of the two training datasets had 

a uniform frequency distribution of object images, and the 

other was with a Zipf-like frequency distribution. There were 

a few reasons for only using six specific objects for the 

modeling framework. First, from the raw corpus of images, 

only 1,200 images included at least 1 of the 6 objects for 

detection in the scene. Second, Bounding boxes indicating 

the objects’ location and label were annotated for the set of 6 

objects intended for detection. Note that some images were 

removed from the corpus due to low image quality such as 

high blur. The corpus was augmented by 180-degree rotation 

and horizontally flipped, yielding a final corpus of about 

3,000 images: 2400 split into training and validation and 600 

for testing.  

 

 

Figure 2: Ranked order histograms of the objects infant and parent handled and named (objects’ ranks across these 

histograms are not necessarily the same). (A) histogram of infant object handling, showing the proportion of 

instances infants handled each object. (B) histogram of parent object handling, showing the proportion of instances 

parents handled each object. (C) histogram of parent object naming, showing the proportion of instances parents 

named each object. Error bars indicate 95% confidence intervals. 

A B C 

Figure 3: Example of cluttered training images, 

including multiple objects for detection, labeled and 

annotated with a bounding box. 
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Each training dataset (the uniform and Zipf-like) was formed 

by a subset of the 2400 images for training. Due to the nature 

of the cluttered scenes, many images included more than 1 

detectable object as seen in Figure 3. These images that 

included multiple objects for detection were counted toward 

the frequencies of more than one object when forming the 

datasets of uniform and Zipf-like frequency distributions (see 

Table 1). The final training data sets included 2,154 images 

each. In the uniform dataset, each object was present in 400 

images. The Zipfian dataset included high frequency and low 

frequency images of objects. In the Zipfian dataset the baby 

doll had the highest frequency (1000 images), and the duck 

was the rarest (100 images).  

 

Table 1: Distribution of object images among the uniform 

and right-skewed datasets for training 

  

Images Per Object Uniform  Zipf-like 

Baby Doll 400 1000 

Ball 400 600 

Chair 400 320 

Bucket 400 240 

Boat 400 140 

Duck 400 100 

Total 2,154 2,154 

  

Model Parameters  

The applied machine learning model was the Faster R-CNN, 

Region-based Convolutional Neural Network (Ren, Girshick 

& Sun, 2015), a well-known, state-of-the-art machine 

learning model for object detection. The model is essentially 

a network composed of three main components: a feature 

extractor, a region proposal network (RPN), and a classifier. 

First, for the feature extraction part, we adapted a pretrained 

CNN VGG16 on the ImageNet data set which includes 

approximately 1.2 million images (Russakovsky et al., 2015). 

The model has 16 layers and classifies images into 1000 

object categories (e.g. keyboard, mouse, coffee mug, 

pencil). The input images (size 224X224) are inputted into 

the VGG16 network. The network evaluates the distinctive 

visual features for the whole image, which allows us to detect 

multiple objects in each image. Second, after feature 

extraction the regions are proposed, therefore only running 

one CNN over the entire image instead of multiple CNN’s for 

each proposed region. Finally, a single softmax layer, outputs 

the class probabilities directly for each region. The last fully 

connected layer and classification layer were adjusted for the 

number of classes in the data set applied in this framework 

(N classes= 7, including ‘background’). 

Training 

The Fast-RCNNs were trained with two different datasets 

that varied in the frequency distributions of object images: 

the Zipf-like and uniform distributions. The network was 

trained for 1000 epochs (iterations).  

Modeling Results 

To determine whether infants’ selective behavior benefits 

learning, we applied a machine learning model trained with  

Infants’ egocentric views. We compared the model’s 

performance of object recognition when trained with a Zipf-

like vs. a uniform distribution of  infants’ egocentric views as 

seen in Table 2. Overall, the model trained with the Zipf-like 

dataset had a significantly higher (t=-3.35, p<0.05) mean 

average precision (mAP=40%) compared to the model 

trained with the uniform  dataset (mAP=23%).  This pattern 

of results suggests that a Zipf-like distribution of data yields 

higher accuracy and benefits learning. 

 

To further evaluate whether the Zipf-like distribution of 

objects in infants’ egocentric views reduce ambiguity we 

evaluated the average precision of each object (see Table 2). 

For the baby doll and the ball there were more images in the 

Zipf-like dataset relative to the uniform distribution and there 

was accordingly a higher average precision for these objects 

in the Zipf-like trained model (AP=56%  and 48%, 

respectively). The chair had a similar number of images in 

both datasets and had a similar average precision in the Zipf-

like (AP=23%) and uniform datasets (AP=21%). For the rest 

of the objects (the bucket, boat and the duck), there were less 

images in the Zipf-like dataset, yet a higher average precision 

in the Zipf-like trained model (AP= 29% and 38% and 43%, 

respectively) compared with the model trained on the 

uniform distribution. These patterns of results, where there is 

higher precision despite less training images suggests that 

information has been shared among objects reducing likely 

competing objects and reducing ambiguity.  

Discussion 

In the real world, the sea of visual clutter provides multiple 

competing referents for every heard object name. This paper 

explored how infants solve this referent ambiguity in a 

cluttered environment to learn first object names. Here we  

presented a behavioral study of infants and their parents 

playing freely with objects and applied a learning model to 

explore the ‘behind the scene’ learning machinery. 

To observe how infants learn object names in a cluttered 

environment, we recorded the play from infants’ egocentric 

view. In order to describe experiences relevant for object 

name learning, we reported the frequency distributions of the 

Table 2: Model test results: average precision per object for the uniform and Zipf-like datasets  

 

 

Object AP Baby Doll Ball Chair Bucket Boat Duck mAP 

Uniform  0.25 0.23 0.21 0.19 0.28 0.24 0.23 

Zipf-Like 0.56 0.48 0.25 0.29 0.38 0.43 0.40 
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objects infants and parents handled, as well as the objects 

parents named. We found that the frequency distributions of 

objects handled and named approximated a right-skewed 

Zipf-like distribution with few highly frequent objects along 

with many low frequency objects. This finding suggests that 

in a cluttered environment, infants and parents consistently 

select a set of a few objects for learning and rarely explored 

the other objects. The consistent object handling and naming 

behaviors during  early word learning offers repetition, a key 

component for learning (Hintzman & Block, 1971, Vlach, 

2014).  

The infant-parent dyads consistently created datasets that 

were highly selective and focused on just a few objects. These 

dynamic patterns of selection may be due to the influence of 

other systems such as human memory or attention which 

decays in a power-law pattern (e.g., Wixted & Ebbesen, 

1991; Wixted, 2004; Baronchelli, Ferrer-i-Cancho, Pastor-

Satorras, Chater, & Christiansen, 2013 ). These non-uniform 

distributions have been shown as optimal conditions for 

adults and may help solve learning problems across many 

domains (Schuler, Reeder, Newport & Aslin, 2017; 

Hendrickson & Perfors, 2018; Caron & Vincent, 2002; 

Salakhutdinov, Torralba, & Tenenbaum, 2011).  

 

As we could not directly observe infants’ learning 

machinery, we applied a machine learning model to explore 

how infants may be learning from a Zipfian distribution. The 

application of the model was weaved with the behavioral 

study by using infants’ egocentric  object views from the 

behavioral study of play as the training images for the 

learning model. The learning machinery from Zipfian 

distributions was evaluated by comparing a training 

apparatus of a Zipf-like and a uniform frequency distribution 

of object images. The testing demonstrated that the training 

using a Zipf-like distribution yielded higher accuracy than a 

uniform distribution. Interestingly, the testing also 

demonstrated that low frequency objects were learned at 

higher rates when trained in the Zipf-like distribution.  

The Zipf-like model’s patterns of results were consistent 

with machine learning and adult studies of Zipfian learning 

(Schuler, Reeder, Newport & Aslin, 2017; Hendrickson & 

Perfors, 2018; Caron & Vincent, 2002; Salakhutdinov, 

Torralba, & Tenenbaum, 2011). These studies suggested that 

the learned features of highly frequent items are shared with 

the low frequency items to reduce referent ambiguity. For 

example, when learning to recognize a rare vehicle such as 

‘bus’, the exemplar  shares features of wheels and window 

shields from an already learned ‘car’, a highly frequent 

vehicle. It has also been suggested that low frequency items  

such as ‘napkin’ may benefit from co-occurrences with high 

frequency objects such as ‘bowl’. These model’s results 

coincide with infants laboratory studies demonstrating that 

infant early word learning is tuned to statistical cues of word-

object co-occurrences. These findings also suggest that 

infants may be able to learn object names not only from 

uniform distributions of word-object occurrences but also 

from a Zipfian distributions.  

Beyond previous early word learning studies, the findings 

in this paper suggest that infants solve referential ambiguity 

in a sea of clutter by consistently selecting a few objects and 

rarely exploring a large subset of objects. This behavior may 

benefit learning and reduce ambiguity in clutter by allowing 

to learn a lot of statistical cues about a few objects. Finally, 

this paper offers a methodological framework of 

incorporating behavioral paradigms with computational 

modeling to stretch our understanding of cognition. 
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