
A SEMI-AUTOMATIC APPROACH FOR ESTIMATING NEAR SURFACE INTERNAL
LAYERS FROM SNOW RADAR IMAGERY

Jerome E. Mitchell1, David J. Crandall1, Geoffrey C. Fox1, and John D Paden2

1School of Informatics and Computing, Indiana University, Bloomington, IN 47403 USA
2Center for Remote Sensing of Ice Sheets, University of Kansas, Lawrence, KS 66045 USA

ABSTRACT
The near surface layer signatures in polar firn are preserved
from the glaciological behaviors of past climate and are im-
portant to understanding the rapidly changing polar ice sheets.
Identifying and tracing near surface internal layers in snow
radar echograms can be used to produce high-resolution ac-
cumulation maps. This process is typically performed man-
ually, which requires time-consuming, dense hand-selection
and interpolation between sections, for each echogram. We
have developed an approach for semi-automatically estimat-
ing near surface internal layers and have applied it to snow
radar echograms acquired from Antarctica. Our solution uti-
lizes an active contour (“snakes”) model to find high-intensity
edges likely to correspond to layer boundaries, while simul-
taneously imposing constraints on smoothness of layer depth
and parallelism among layers.

Index Terms— Radar Image Processing, Near Surface
Internal Layers

1. INTRODUCTION

The IPCC Fourth Assessment reports considerable uncer-
tainty associated with projected sea level rise over the coming
decade and century [1]. Understanding the ice flow dynamics
in Greenland and Antarctica poses a significant challenge,
but the ambiguity can be substantially reduced by more and
better observations of the polar ice sheets’ internal structure.

The Center for Remote Sensing of Ice Sheets (CReSIS)
has developed a snow radar for operation in NASA’s 2011
Operation Ice Bridge program in order to image near sur-
face internal layers (as shown in Figure 1(a)) and to produce
high-resolution accumulation maps. Identifying snow layers
in radar imagery is important for studying climate variability,
but tracing layers in echograms by hand is labor-intensive
and subjective. The data growth from past and projected
field campaigns will require automated techniques in order
to provide results to the polar science community in a timely
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manner. However, automatically tracing layers in echograms
are challenging due to the limited resolution, large degree
of noise, faint layer boundaries, and complex structures In
this paper, we present an approach to semi-automate the most
labor-intensive portion of near surface internal layer identifi-
cation. After requiring a user to estimate a global parameter
for determining the number of visible layers, our approach
attempts to trace those layers using image processing tech-
niques by applying high-level constraints, such as how the
ice-air boundary should be most prominent and how snow
layers should be modestly parallel.

2. RELATED LITERATURE

There has been relatively little work on estimating near sur-
face internal layers from echograms acquired in either Green-
land or Antarctica. Most related work has focused on iden-
tifying either basal boundaries or other coarse properties of
echograms. For example, Freeman et al. [2] and Ferro and
Bruzzone [3] investigated how shallow ice features can be au-
tomatically detected in icy regions from echograms of Mars.
In other work, Ferro and Bruzzone [4] used echograms of
the Martian subsurface to detect basal returns. Approaches
to identifying surface and bedrock layers in polar radar im-
agery have been addressed in Reid et al. [5], Ilisei et al. [6],
and Crandall et al. [7].

For more relevant solutions to the internal layer identifi-
cation problem, Fahnestock et al. [8] developed an algorithm,
which uses cross-correlation and a peak-following routine
to trace near surface internal layers in northern Greenland.
Karlsson and Dahl-Jensen [9] present a ramp function-based
approach for predicting internal layers. Sime et al. [10] de-
veloped a technique to obtain layer dip information from two
Antarctic datasets: the ground-based Fletcher Promontory
and the airborne-based Wilkes Subglacial Basin. They ap-
plied a horizontal averaging technique to reduce layer noise,
identified layers, isolated individual ‘layer objects,’ measured
the orientation and other object properties, and collected valid
dip information. The authors obtained good results in esti-
mating and characterizing dips but do not attempt to trace
complete layers, which are useful in other applications. We
propose a novel approach to trace complete layers by combin-
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Fig. 1. Illustration of our Semi-Automatic Near Surface Internal Layers Detection Algorithm: (a) Original Snow Radar
Echogram, (b) Result of Canny Edge Detection to Find Ice Surface, (c) Result of Curve Point Classification, (d) Detected
Layers (green) and Maximum Curve Points (blue asterisks)

ing ‘off-the shelf’ computer vision techniques for estimating
high intensity near surface internal layers from snow radar
echograms.

3. METHODOLOGY

We use observations about how domain experts detect layer
boundaries in order to develop a semi-automated algorithm to
mimic these behaviors. As shown in Figure 1(a) and as is typ-
ical for our experimental images, the surface reflection is very
strong and near surface layer intensity generally decreases as
depth increases. Also, near surface layers are approximately
parallel, but may have modest changes in slope both to one
another and to the ice surface. We propose a technique, which
attempts to find the prominent surface reflection and searches
for similar (but invariably weaker) layer structures below the
surface. We use each layer as an estimate of the appearance
for the layer below it and an active contours (“snakes”) model
to snap the correct layer structure given this estimate. We de-
scribe the process of detecting the surface, estimating layer
location using curve point classification and refining the use
of snakes in subsections 3.1, 3.2, and 3.3, respectively, and
use Figure 1 as a demonstration of our proposed approach.

3.1. Edge Detection

We find the location of the surface boundary, which is typ-
ically the most prominent edge in the echogram. We use a

Canny edge detector [11] because of its performance in de-
tecting strong intensity contrasts for our near surface layer
dataset (see Figure 1(b)). In detecting this initial ice surface,
we used the following fixed Canny parameters: a sigma of 2
for the standard deviation of the Gaussian filter and a low and
high thresholds of 0.7 and 1.8, respectively. Since the ice sur-
face is symmetrical to subsequent layers, it provides a good
starting template.

3.2. Curve Point Classification

While the ice surface can be readily detected by edge detec-
tion, using it for near surface internal layers is not possible
because of the very weak layer boundaries and the noise in-
herent in echograms. As a consequence, we use Steger’s [12]
approach to identify points in an echogram, which were likely
to be part of curvilinear structures. In short, this approach
computes statistics on gradient structures within local image
patches and investigates areas with prominent gradients in a
coherent direction. We identify peaks in the scores computed
by Steger (shown as blue asterisks in Figure 1(d)) and use
these to suggest initial curve positions for estimating near sur-
face internal layers. For the first layer, we use the ice surface
estimated previously and shift it down, (in the y direction) so
it intersects the first maximum point. This process is repeated
until the number of near surface internal layers specified by
the user has been found and gives initial estimates of layer
positions and shapes, which we refine in the next step.
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Fig. 2. Sample results of our approach on three snow radar echograms.

3.3. Active Contours (Snakes)

To refine the curve shape and position estimates from the pre-
vious section, we used an active contours (snakes) model [13],
a procedure for allowing an initial contour to gravitate to-
wards an object boundary. Briefly summarized, the snakes
model defines an energy function, which computes the “cost”
of a particular curve (sequence of points). The function is
defined to encourage the curve to align with high-gradient
edge pixels but to discourage the curve from having either
discontinuities or sharps bends. These two goals are often in
tension, and the energy minimization function is used to find
the curve with the best trade-off between them. An iterative
gradient descent (hill-climbing) algorithm is used to find the
curve with the best (local) minimum, given an estimate of the
correct answer as initialization. In our methodology, active
contours are used to warp the initial templates from the last
section into a refined estimate, which better matches the lo-
cal image data. For this to succeed, the initial contour must

be close to the actual layer in order for the snake to find the
correct boundary and not be confused by either noise or other
edges in the image. A layer is fit when the energy function
converges to a either minimum or when a maximum number
of iterations has reached its threshold. Using active contours
requires setting several parameters (α, β, and γ values – these
are weights on the terms in the energy minimization func-
tion and control the trade-off between the forces mentioned
above). We tuned these parameters empirically to find values,
which work well on most images and allow the user to further
tune them on a per-image basis, if needed.

4. RESULTS

Figure 3 shows the result of our approach for Figure 1. We ob-
serve it has successfully found over a dozen layers correctly,
although it misses some of the very faint layers towards the
bottom of the echogram. Figure 2 shows results for three ad-



Fig. 3. Estimated near surface internal layers from the
echogram in Figure 1.

ditional echograms. While the algorithm works quite well for
layers near the surface, it does miss or incorrectly identify
some of the deeper layers (such as the discontinuities in Fig-
ure 1(c)) in which the estimates skip from one layer boundary
to another).

5. CONCLUSION AND FUTURE WORK

We have developed a semi-automated approach to estimate
near surface internal layers in snow radar imagery. Our solu-
tion utilizes an active contour model in addition to edge de-
tection and Steger’s curve classification. Our technique is a
step towards the ultimate goal of unburdening domain experts
from the task of dense hand selection. By providing tools to
the polar science community, high resolution accumulation
maps can be readily processed to determine the contribution
of global climate change to sea level rise. In the future, we
intend to explore automated algorithms for determining inter-
nal layers in other data products and to develop metrics for
allowing us to quantify the quality of our layer identification
approaches and to evaluate them against other methods (in-
cluding hand-traced echograms).
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