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* We employ an iterative and interactive approach:
A. Find discriminative attribute candidates for 2 similar classes with a latent CRF
B. Use a recommender system to identify candidates likely to be meaningful
C. Present them to a human for naming and verification. Repeat.

C. Human verifies semantic meaningfulness, and we
update recommender system with user feedback

4. Image-to-text Generation Results
* We can annotate unseen images with region labels using our discovered local attributes:
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2. Discovering Localized Attributes with Latent CRFs 3. Attribute Discovery Results

* Leeds Butterfly (10 categories, 832 images)
« Three subsets of Caltech-UCSD Birds 200 (60 images per category):
Random (10 categories)

* Goal: Find discriminative local attribute candidates given images from
two categories

« Define a latent CRF to find regions in positive images that are similar to Hard (10 categories)

Warbler (5 categories)
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* When finding multiple candidates, also encourage diversity:
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* Attribute detection: add test image to CRF and run inference

* Implementation details:
- Generating regions: hierarchical segmentation
- Region features: color, gPb contour, size, shape, and spatial location
- Distances: L2 for spatial location, chi-squared for other features
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5. Image Classification Results
* We run attribute detection to produce a binary feature vector for each image, then use these vectors
for fine-grained recognition using Nearest Neighbor and SVM classifiers.

* We compare four approaches to generate localized attributes:
— Proposed: our proposed method that focuses on discriminative power and semantics
— Hand-listed (focus on semantics): expert-generated attributes
(focus on discrimination): non-semantic candidates removed in post-process
— Upper bound (price paid for semantics): all discriminative candidates including non-semantic ones

Our proposed method performs srgn/ﬁcantly better than existing approaches
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6. Summary and Conclusions

* Finds local attributes that are both discriminative and human understandable.

* Recommender system prioritizes candidates likely to be meaningful, saving user time.
* Compares favorably to existing approaches on two fine-grained recognition datasets.
* More information at http://vision.soic.indiana.edu/attributediscovery




