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Our paper
* Can we observe nature by mining photo websites?

* We study two phenomena: snow and vegetation cover

— Estimate geo-temporal distributions at continental scale,
using ~150 million photos from Flickr (via public API)

— Analyze geo-tags, timestamps, text tags, visual content
— Evaluate techniques for estimation in crowd-sourced data
— Compare to data from weather stations and satellites



Related Work

* Crowd-sourced observational data, e.g.:
— Estimating public mood from Twitter

— Predicting product sales from Flickr tags

— Estimating spread of flu from search queries

— Monitoring forest fires from Twitter
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Challenges

Incorrect geotags and timestamps

Difficult to recognize image content
automatically

Text tags helpful but noisy
— Some tags are completely incorrect, others are misleading

Dataset biases

— Many more photos in cities than rural areas

— People more likely to take photos of the unusual
Misleading image data

— e.g. zoos, ski slopes, synthetic images, etc.



Combining evidence

* Photos by different people are (almost) independent
observations, with uncorrelated noise

Probability of actual snow

015 1 ; 3 i 2 3 :
# of users tagging a photo
with “snow”



A simple model

e Suppose we’re interested in some object X (e.g. snow)
— Specifically, whether X was present at a given time and place
— Let s denote the event that a given user takes a picture of X
— Assume s depends on presence of X:

P(s | X) = probability of taking picture of X, given X was present

Could be factored into: Probability of seeing X, probability of
taking photo, probability of uploading to Flickr, ...

P(s | X) = probability of taking picture of X, given X was not present

Bad timestamps or geotags, misleading image content, ...



A simple model

* Suppose m users took photos of X, and n users did not
— Using Bayes law,
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— Assuming each user acts independently (conditioned on X),

)
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— High or low ratio means high or low probability of X;
ratio near 1 means low confidence either way



Snow estimation in cities

e Estimate daily snow cover (presence or absence)

True positive rate

— Predict using Flickr photo tags, compare to ground truth
from National Weather Service historical data

— Estimate parameters on 2007-2008, test on 2009-2010.
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Learning relevant tags

* Find tags that correlate well with snow cover in GT

— Feature vector for each day is histogram of number of
people that used each tag; labels are snow/no snow from GT

— Train on 2007-2008 data, test on 2009-2010 data
— Increases classification accuracies significantly:

Hand-selected tags Learned tags (via SVM)
- . 2 st o L -_"' '.
e ; — ‘ ~—— Chicago
: +~—— Boston
. [P Ry T ¥ e g e R L L R RS AR LR Ly . ¢ 7 - 1 5% B et e N o A o e e e S B o o Sl T N S o NYC |-
o — PhiladelphiaJ
. ) S
g o+~
L 0.6 § : ’ S
> ’ * (O]
B : >
g { ,,/ .E }
wv ’
o o
o @Al Qo
S G - o 04t
= CFf E
. - ~ 4
| = Chicago ’
02 Lo U : e i Ve
=—a NYC : Re
Philadelphia . et
0 7 1 i L L ,’,
'%.O 0.2 0.4 0.6 0.8 1.0 0%6 0’2 0‘4 016 018 10

False positive rate False positive rate



Continental-scale observation

e Estimate snow cover on each day at
each place in North America

— For each geographic bin of size 1° x 1°

— Use ground truth data from Terra
satellite

NASA Terra

Snow cover

/ (green)
.:; L .
-

Missing data
and cloud cover
(black)

No snow cover
(blue)




Map estimated by Flickr photo analysis
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Continental-scale estimation

* Predict presence of snow on each day for each geo bin
— ~35 million total decisions
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Visual features

e Color and texture features similar to GIST

— Divide image into array of 4x4 cells; in each cell compute
mean color value (in CIELab space) and mean gradient energy

Color channels

Image

Gradient magnitude




Visual features

e Color and texture features similar to GIST

— Divide image into array of 4x4 cells; in each cell compute
mean color value (in CIELab space) and mean gradient energy

Color channels

Image

Image descriptor
B Is concatenation
Gradient magnitude gl of |., A, B, and G
(64 dimensions);
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SVM classifier




Classification with visual features

* Vision yields modest (¥3%) improvement in precision

Correctly classified as non-snow: Incorrectly classified as snow:




Estimating vegetation cover

* We also estimate vegetation cover (greenery index)

TPR

on a continental scale

— Again using ground truth data from Terra satellite
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Conclusion

* We propose to observe the natural world through mining
public photos from online social sharing sites

— Hundreds of billions of images available
— But noise, bias, content extraction are challenges

 We study two phenomena, snow cover and vegetation

— Using geo-tags, time stamps, text tags, and visual features

— Use ground truth from satellites to measure estimation accuracy
* Future work

— More sophisticated computer vision techniques

— Combine our noisy, sparse data with biologists’ noisy, sparse data

— Study other phenomena, like migration patterns of wildlife,
distributions of blooming flowers, etc.
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False positives
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